Assembly of complex structures from a small set of tiles is a common theme in biology. For example, many copies of identical proteins make up polyhedron-shaped, viral capsids and tubulin can make long microtubules. This inspired the development of tile-based DNA self-assembly for nanoconstruction, particularly for structures with high symmetries. In the final structure, each type of motif will adopt the same conformation, either rigid or with defined flexibility. For structures that have no symmetry, their assembly remains a challenge from a small set of tiles. To meet this challenge, algorithmic self-assembly has been explored driven by computational science, but it is not clear how to implement this approach to one-dimensional (1D) structures. Here, we have demonstrated that a constant shift of a conformational equilibrium could allow 1D structures to evolve. As shown by atomic force microscopy imaging, one type of DNA tile successfully assembled into DNA spirals and concentric circles, which became less and less curved from the structure's center outward. This work points to a new direction for tile-based DNA assembly.
more »
« less
Control of the stepwise assembly–disassembly of DNA origami nanoclusters by pH stimuli-responsive DNA triplexes
We present the pH-triggered reversible assembly of DNA origami clusters in a stepwise fashion. The structure formation and dissociation are controlled by a series of consecutive pH-stimulation processes that rely on the triplex-to-duplex transition of DNA triplexes in different pH conditions. This multilevel dynamic assembly strategy brings more structural complexity and provides the possibility of developing intelligent materials for engineering applications.
more »
« less
- Award ID(s):
- 1814797
- PAR ID:
- 10194799
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 11
- Issue:
- 39
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 18026 to 18030
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recently, the DNA brick strategy has provided a highly modular and scalable approach for the construction of complex structures, which can be used as nanoscale pegboards for the precise organization of molecules and nanoparticles for many applications. Despite the dramatic increase of structural complexity provided by the DNA brick method, the assembly pathways are still poorly understood. Herein, we introduce a “seed” strand to control the crucial nucleation and assembly pathway in DNA brick assembly. Through experimental studies and computer simulations, we successfully demonstrate that the regulation of the assembly pathways through seeded growth can accelerate the assembly kinetics and increase the optimal temperature by circa 4–7 °C for isothermal assembly. By improving our understanding of the assembly pathways, we provide new guidelines for the design of programmable pathways to improve the self‐assembly of DNA nanostructures.more » « less
-
Nearly thirty years after its inception, the field of DNA-programmed colloidal self-assembly has begun to realize its initial promise. In this review, we summarize recent developments in designing effective interactions and understanding the dynamic self-assembly pathways of DNA-coated nanoparticles and microparticles, as well as how these advances have propelled tremendous progress in crystal engineering. We also highlight exciting new directions showing that new classes of subunits combining nanoparticles with DNA origami can be used to engineer novel multicomponent assemblies, including structures with self-limiting, finite sizes. We conclude by providing an outlook on how recent theoretical advances focusing on the kinetics of self-assembly could usher in new materials-design opportunities, like the possibility of retrieving multiple distinct target structures from a single suspension or accessing new classes of materials that are stabilized by energy dissipation, mimicking self-assembly in living systems.more » « less
-
null (Ed.)The mechanical properties of DNA have enabled it to be a structural and sensory element in many nanotechnology applications. While specific base-pairing interactions and secondary structure formation have been the most widely utilized mechanism in designing DNA nanodevices and biosensors, the intrinsic mechanical rigidity and flexibility are often overlooked. In this article, we will discuss the biochemical and biophysical origin of double-stranded DNA rigidity and how environmental and intrinsic factors such as salt, temperature, sequence, and small molecules influence it. We will then take a critical look at three areas of applications of DNA bending rigidity. First, we will discuss how DNA’s bending rigidity has been utilized to create molecular springs that regulate the activities of biomolecules and cellular processes. Second, we will discuss how the nanomechanical response induced by DNA rigidity has been used to create conformational changes as sensors for molecular force, pH, metal ions, small molecules, and protein interactions. Lastly, we will discuss how DNA’s rigidity enabled its application in creating DNA-based nanostructures from DNA origami to nanomachines.more » « less
-
Abstract The rational design of molecular electronics remains a grand challenge of materials science. DNA nanotechnology has offered unmatched control over molecular geometry, but direct electronic functionalization is a challenge. Here a generalized method is presented for tuning the local band structure of DNA using transmetalation in metal‐mediated base pairs (mmDNA). A method is developed for time‐resolved X‐ray diffraction using self‐assembling DNA crystals to establish the exchange of Ag+ and Hg2+ in T:T base pairs driven by pH exchange. Transmetalation is tracked over six reaction phases as crystal pH is changed from pH 8.0 to 11.0, and vice versa. A detailed computational analysis of the electronic configuration and transmission in the ensuing crystal structures is then performed. This findings reveal a high conductance contrast in the lowest unoccupied molecular orbitals (LUMO) as a result of metalation. The ability to exchange single transition metal ions as a result of environmental stimuli heralds a means of modulating the conductance of DNA‐based molecular electronics. In this way, both theoretical and experimental basis are established by which mmDNA can be leveraged to build rewritable memory devices and nanoelectronics.more » « less
An official website of the United States government

