skip to main content


Title: Location of menaquinone and menaquinol headgroups in model membranes
Menaquinones are lipoquinones that consist of a headgroup (naphthoquinone, menadione) and an isoprenyl sidechain. They function as electron transporters in prokaryotes such as Mycobacterium tuberculosis. For these studies, we used Langmuir monolayers and microemulsions to investigate how the menaquinone headgroup (menadione) and the menahydroquinone headgroup (menadiol) interact with model membrane interfaces to determine if differences are observed in the location of these headgroups in a membrane. It has been suggested that the differences in the locations are mainly caused by the isoprenyl sidechain rather than the headgroup quinone-to-quinol reduction during electron transport. This study presents evidence that suggests the influence of the headgroup drives the movement of the oxidized quinone and the reduced hydroquinone to different locations within the interface. Utilizing the model membranes of microemulsions and Langmuir monolayers, it is determined whether or not there is a difference in the location of menadione and menadiol within the interface. Based on our findings, we conclude that the menadione and menadiol may reside in different locations within model membranes. It follows that if menaquinone moves within the cell membrane upon menaquinol formation, it is due at least in part, to the differences in the properties of headgroup interactions with the membrane in addition to the isoprenyl sidechain.  more » « less
Award ID(s):
1709564
NSF-PAR ID:
10195405
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Canadian Journal of Chemistry
Volume:
98
Issue:
6
ISSN:
0008-4042
Page Range / eLocation ID:
307 to 317
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Menaquinones (MK) are hydrophobic molecules that consist of a naphthoquinone headgroup and a repeating isoprenyl side chain and are cofactors used in bacterial electron transport systems to generate cellular energy. We have previously demonstrated that the folded conformation of truncated MK homologues, MK-1 and MK-2, in both solution and reverse micelle microemulsions depended on environment. There is little information on how MKs associate with phospholipids in a model membrane system and how MKs affect phospholipid organization. In this manuscript, we used a combination of Langmuir monolayer studies and molecular dynamics (MD) simulations to probe these questions on truncated MK homologues, MK-1 through MK-4 within a model membrane. We observed that truncated MKs reside farther away from the interfacial water than ubiquinones are are located closer to the phospholipid tails. We also observed that phospholipid packing does not change at physiological pressure in the presence of truncated MKs, though a difference in phospholipid packing has been observed in the presence of ubiquinones. We found through MD simulations that for truncated MKs, the folded conformation varied, but MKs location and association with the bilayer remained unchanged at physiological conditions regardless of side chain length. Combined, this manuscript provides fundamental information, both experimental and computational, on the location, association, and conformation of truncated MK homologues in model membrane environments relevant to bacterial energy production. 
    more » « less
  2. Antibiotics are losing effectiveness as bacteria become resistant to conventional drugs. To find new alternatives, antimicrobial peptides (AMPs) are rationally designed with different lengths, charges, hydrophobicities (H), and hydrophobic moments (μH), containing only three types of amino acids: arginine, tryptophan, and valine. Six AMPs with low minimum inhibitory concentrations (MICs) and <25% toxicity to mammalian cells are selected for biophysical studies. Their secondary structures are determined using circular dichroism (CD), which finds that the % α‐helicity of AMPs depends on composition of the lipid model membranes (LMMs): gram‐negative (G(−)) inner membrane (IM) >gram‐positive (G(+))> Euk33 (eukaryotic with 33 mol% cholesterol). The two most effective peptides, E2‐35 (16 amino acid [AA] residues) and E2‐05 (22 AAs), are predominantly helical in G(–) IM and G(+) LMMs. AMP/membrane interactions such as membrane elasticity, chain order parameter, and location of the peptides in the membrane are investigated by low‐angle and wide‐angle X‐ray diffuse scattering (XDS). It is found that headgroup location correlates with efficacy and toxicity. The membrane bending modulusKCdisplays nonmonotonic changes due to increasing concentrations of E2‐35 and E2‐05 in G(–) and G(+) LMMs, suggesting a bacterial killing mechanism where domain formation causes ion and water leakage.

     
    more » « less
  3. null (Ed.)
    Designing of nanoparticles (NPs) for biomedical applications or mitigating their cytotoxic effects requires microscopic understanding of their interactions with cell membranes. Such insight is best obtained by studying model biomembranes which, however, need to replicate actual cell membranes, especially their compositional heterogeneity and charge. In this work we have investigated the role of lipid charge density and packing of phase separated Langmuir monolayers in the penetration and phase specificity of charged quantum dot (QD) binding. Using an ordered and anionic charged lipid in combination with uncharged but variable stiffness lipids we demonstrate how the subtle interplay of zwitterionic lipid packing and anionic lipid charge density can affect cationic nanoparticle penetration and phase specific binding. Under identical subphase pH, the membrane with higher anionic charge density displays higher NP penetration. We also observe coalescence of charged lipid rafts floating amidst a more fluidic zwitterionic lipid matrix due to the phase specificity of QD binding. Our results suggest effective strategies which can be used to design NPs for diverse biomedical applications as well as to devise remedial actions against their harmful cytotoxic effects especially against respiratory diseases. 
    more » « less
  4. Phosphatidic acid (PA) is a signaling lipid that is produced enzymatically from phosphatidylcholine (PC), lysophosphatidic acid, or diacylglycerol. Compared to PC, PA lacks a choline moiety on the headgroup, making the headgroup smaller than that of PC and PA, and PA has a net negative charge. Unlike the cylindrical geometry of PC, PA, with its small headgroup relative to the two fatty acid tails, is proposed to support negatively curved membranes. Thus, PA is thought to play a role in a variety of biological processes that involve bending membranes, such as the formation of intraluminal vesicles in multivesicular bodies and membrane fusion. Using supported tubulated lipid bilayers (STuBs), the extent to which PA localizes to curved membranes was determined. STuBs were created via liposome deposition with varying concentrations of NaCl (500 mM to 1 M) on glass to form supported bilayers with connected tubules. The location of fluorescently labeled lipids relative to tubules was determined by imaging with total internal reflection or confocal fluorescence microscopy. The accumulation of various forms of PA (with acyl chains of 16:0-6:0, 16:0-12:0, 18:1-12:0) were compared to PC and the headgroup labeled phosphatidylethanolamine (PE), a lipid that has been shown to accumulate at regions of curvature. PA and PE accumulated more at tubules and led to the formation of more tubules than PC. Using large unilamellar liposomes in a dye-quenching assay, the location of the headgroup labeled PE was determined to be mostly on the outer, positively curved leaflet, whereas the tail labeled PA was located more on the inner, negatively curved leaflet. This study demonstrates that PA localizes to regions of negative curvature in liposomes and supports the formation of curved, tubulated membranes. This is one way that PA could be involved with curvature formation during a variety of cell processes.

     
    more » « less
  5. null (Ed.)
    Abstract

    Synthetic lipid membranes are self-assembled biomolecular double layers designed to approximate the properties of living cell membranes. These membranes are employed as model systems for studying the interactions of cellular envelopes with the surrounding environment in a controlled platform. They are constructed by dispersing amphiphilic lipids into a combination of immiscible fluids enabling the biomolecules to self-assemble into ordered sheets, or monolayers at the oil-water interface. The adhesion of two opposing monolayer sheets forms the membrane, or the double layer. The mechanical properties of these synthetic membranes often differ from biological ones mainly due to the presence of residual solvent in between the leaflets. In fact, the double layer compresses in response to externally applied electrical field with an intensity that varies depending on the solvent present. While typically viewed as a drawback associated with their assembly, in this work the elasticity of the double layer is utilized to further quantify complex biophysical phenomena. The adsorption of charged molecules on the surface of a lipid bilayer is a key property to decipher biomolecule interactions at the interface of the cell membrane, as well as to develop effective antimicrobial peptides and similar membrane-active molecules. This adsorption generates a difference in the boundary potentials on either side of the membrane which may be tracked through electrophysiology. The soft synthetic membranes produced in the laboratory compress when exposed to an electric field. Tracking the minimum membrane capacitance allows for quantifying when the intrinsic electric field produced by the asymmetry is properly compensated by the supplied transmembrane voltage. The technique adopted in this work is the intramembrane field compensation (IFC). This technique focuses on the current generated by the bilayer in response to a sinusoidal voltage with a DC component, VDC. Briefly, the output sinusoidal current is divided into its harmonics and the second harmonic equals zero when VDC compensates the internal electric field. In this work, we apply the IFC technique to droplet interface bilayers (DIB) enabling the development of a biological sensor. A certain membrane elasticity is needed for accurate measurements and is tuned through the solvent selection. The asymmetric DIBs are formed, and an automated PID-controlled IFC design is implemented to rapidly track and compensate the membrane asymmetry. The closed loop system continuously reads the current and generates the corresponding voltage until the second harmonic is abated. This research describes the development and optimization of a biological sensor and examines how varying the structure of the synthetic membrane influences its capabilities for detecting membrane-environment interactions. This platform may be applied towards studying the interactions of membrane-active molecules and developing models for the associated phenomena to enhance their design.

     
    more » « less