Deep generative models of 3D shapes have received a great deal of research interest. Yet, almost all of them generate discrete shape representations, such as voxels, point clouds, and polygon meshes. We present the first 3D generative model for a drastically different shape representation—describing a shape as a sequence of computer-aided design (CAD) operations. Unlike meshes and point clouds, CAD models encode the user creation process of 3D shapes, widely used in numerous industrial and engineering design tasks. However, the sequential and irregular structure of CAD operations poses significant challenges for existing 3D generative models. Drawing an analogy between CAD operations and natural language, we propose a CAD generative network based on the Transformer. We demonstrate the performance of our model for both shape autoencoding and random shape generation. To train our network, we create a new CAD dataset consisting of 178,238 models and their CAD construction sequences. We have made this dataset publicly available to promote future research on this topic.
more »
« less
The Silver Lining
Clouds are shareable scientific instruments that create the potential for reproducibility by ensuring that all investigators have access to a common execution platform on which computational experiments can be repeated and compared. By virtue of the interface they present, they also lead to the creation of digital artifacts compatible with the cloud, such as images or orchestration templates, that go a long way—and sometimes all the way—to representing an experiment in a digital, repeatable form. In this article, I describe how we developed these natural advantages of clouds in the Chameleon testbed and argue that we should leverage them to create a digital research marketplace that would make repeating experiments as natural and viable part of research as sharing ideas via reading papers is today.
more »
« less
- Award ID(s):
- 1743358
- PAR ID:
- 10195661
- Date Published:
- Journal Name:
- IEEE internet computing
- ISSN:
- 1941-0131
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In recent years, Field Programmable Gate Arrays (FPGAs) have gained prominence in cloud computing data centers, driven by their capacity to offload compute-intensive tasks and contribute to the ongoing trend of data center disaggregation, as well as their ability to be directly connected to the network. While FPGAs offer numerous advantages, they also pose challenges in terms of configuration, programmability, and monitoring, particularly in the absence of an operating system with essential features like the TCP/IP networking stack. This paper introduces an In-band Network Telemetry (INT) approach based on the P4 language for FPGA data plane programming. The goal is to facilitate monitoring and network performance analysis by providing one-way packet delay information. The approach is demonstrated in the Open Cloud Testbed (OCT) and FABRIC testbeds, both offering open access to the research community with greater FPGA availability than commercial clouds. The workflow enables researchers to create custom P4 programs and bitstreams for installation on FPGAs. The paper presents a multi-step approach allowing experimentation within the New England Research Cloud (NERC), testing in OCT, and final deployment in FABRIC, well-suited for one-way delay measurements due to synchronized clocks via GPS time signals. Contributions include the provision of a P4 workflow for FPGAs in a research cloud, a novel FPGA clock-based INT approach, and a comprehensive evaluation through simulation and experiments in the Open Cloud and FABRIC testbeds.more » « less
-
With the increase of natural disasters all over the world, we are in crucial need of innovative solutions with inexpensive implementations to assist the emergency response systems. Information collected through conventional sources (e.g., incident reports, 911 calls, physical volunteers, etc.) are proving to be insufficient [1]. Responsible organizations are now leaning towards research grounds that explore digital human connectivity and freely available sources of information. U.S. Geological Survey and Federal Emergency Management Agency (FEMA) introduced Critical Lifeline (CLL) s which identifies the most significant areas that require immediate attention in case of natural disasters. These organizations applied crowdsourcing by connecting digital volunteer networks to collect data on the critical lifelines from data sources including social media [3], [4], [5]. In the past couple of years, during some of the deadly hurricanes (e.g., Harvey, IRMA, Maria, Michael, Florence, etc.), people took on different social media platforms like never seen before, in search of help for rescue, shelter, and relief. Their posts reflect crisis updates and their real-time observations on the devastation that they witness. In this paper, we propose a methodology to build and analyze time-frequency features of words on social media to assist the volunteer networks in identifying the context before, during and after a natural disaster and distinguishing contexts connected to the critical lifelines. We employ Continuous Wavelet Transform to help create word features and propose two ways to reduce the dimensions which we use to create word clusters to identify themes of conversations associated with stages of a disaster and these lifelines. We compare two different methodologies of wavelet features and word clusters both qualitatively and quantitatively, to show that wavelet features can identify and separate context without using semantic information as inputs.more » « less
-
Watrall, Ethan; Goldstein, Lynne (Ed.)The transition to digital approaches in archaeology includes moving from 2D to 3D images of artifacts. This paper includes a discussion of creating 3D images of artifacts in research with students, formally through a course, and informally in a 3D lab and during field research. Students participate in an ongoing research project by 3D digital imaging objects and contextualizing them. The benefits of 3D images of artifacts are discussed for research, instruction, and public outreach (including making 3D printed replicas for teaching and exhibits). In the 3D digital imaging course, students use surface laser scanners to image small objects that would be encountered in an archaeological excavation, with objects of increasing difficulty to image over the course of the semester. Mid-way through the course, each student is assigned an artifact for a project to include 3D laser scanning and photogrammetry, digital measuring, and research. Students write weekly blog updates on a web page they each create. Students learn to measure digital images and manipulate them with other software. Open source software is encouraged, when available. Options for viewing 3D images are discussed so students can link 3D scans to their web pages. Students prepare scans for 3D printing in the Digital Imaging and Visualization (DIVA) Lab. This paper includes a discussion of research and instruction in the DIVA Lab, the Maya field project that created the need for the DIVA Lab, and the use of 3D technology in research and heritage studies in the Maya area.more » « less
-
Computational notebooks have gained much pop- ularity as a way of documenting research processes; they allow users to express research narrative by integrating ideas expressed as text, process expressed as code, and results in one executable document. However, the environments in which the code can run are currently limited, often containing only a fraction of the resources of one node, posing a barrier to many computations. In this paper, we make the case that integrating complex experimental environments, such as virtual clusters or complex networking environments that can be provisioned via infrastructure clouds, into computational notebooks will significantly broaden their reach and at the same time help realize the potential of clouds as a platform for repeatable research. To support our argument, we describe the integration of Jupyter notebooks into the Chameleon cloud testbed, which allows the user to define complex experimental environments and then assign processes to elements of this environment similarly to the way a laptop user may switch between different desktops. We evaluate our approach on an actual experiment from both the development and replication perspective.more » « less
An official website of the United States government

