skip to main content


Title: RapidCDC: Leveraging Duplicate Locality to Accelerate Chunking in CDC-based Deduplication Systems
In this paper we leverage the existence of a property in the duplicate data, named duplicate locality, that reveals the fact that multiple duplicate chunks are likely to occur together. In other words, one duplicate chunk is likely to be immediately followed by a sequence of contiguous duplicate chunks. The longer the sequence, the stronger the locality is. After a quantitative analysis of duplicate locality in real-world data, we propose a suite of chunking techniques that exploit the locality to remove almost all chunking cost for deduplicatable chunks in CDC-based deduplication systems. The resulting deduplication method, named RapidCDC, has two salient features. One is that its efficiency is positively correlated to the deduplication ratio. RapidCDC can be as fast as a fixed-size chunking method when applied on data sets with high data redundancy. The other feature is that its high efficiency does not rely on high duplicate locality strength. These attractive features make RapidCDC’s effectiveness almost guaranteed for datasets with high deduplication ratio. Our experimental results with synthetic and real-world datasets show that RapidCDC’s chunking speedup can be up to 33× higher than regular CDC. Meanwhile, it maintains (nearly) the same deduplication ratio.  more » « less
Award ID(s):
1815303
NSF-PAR ID:
10195805
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SoCC '19: Proceedings of the ACM Symposium on Cloud Computing
Page Range / eLocation ID:
220 to 232
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data deduplication has been widely used in storage systems to improve storage efficiency and I/O performance. In particular, content-defined variable-size chunking (CDC) is often used in data deduplication systems for its capability to detect and remove duplicate data in modified files. However, the CDC algorithm is very compute-intensive and inherently sequential. Efforts on accelerating it by segmenting a file and running the algorithm independently on each segment in parallel come at a cost of substantial degradation of deduplication ratio. In this paper, we propose SS-CDC, a two-stage parallel CDC, that enables (almost) full parallelism on chunking of a file without compromising deduplication ratio. Further, SS-CDC exploits instruction-level SIMD parallelism available in today's processors. As a case study, by using Intel AVX-512 instructions, SS-CDC consistently obtains superlinear speedups on a multi-core server. Our experiments using real-world datasets show that, compared to existing parallel CDC methods which only achieve up to a 7.7X speedup on an 8-core processor with the deduplication ratio degraded by up to 40%, SS-CDC can achieve up to a 25.6X speedup with no loss of deduplication ratio. 
    more » « less
  2. null (Ed.)
    A critical issue of current speech-based sequence-to-one learning tasks, such as speech emotion recognition (SER), is the dynamic temporal modeling for speech sentences with different durations. The goal is to extract an informative representation vector of the sentence from acoustic feature sequences with varied length. Traditional methods rely on static descriptions such as statistical functions or a universal background model (UBM), which are not capable of characterizing dynamic temporal changes. Recent advances in deep learning architectures provide promising results, directly extracting sentence-level representations from frame-level features. However, conventional cropping and padding techniques that deal with varied length sequences are not optimal, since they truncate or artificially add sentence-level information. Therefore, we propose a novel dynamic chunking approach, which maps the original sequences of different lengths into a fixed number of chunks that have the same duration by adjusting their overlap. This simple chunking procedure creates a flexible framework that can incorporate different feature extractions and sentence-level temporal aggregation approaches to cope, in a principled way, with different sequence-to-one tasks. Our experimental results based on three databases demonstrate that the proposed framework provides: 1) improvement in recognition accuracy, 2) robustness toward different temporal length predictions, and 3) high model computational efficiency advantages. 
    more » « less
  3. We present HiRA-Pro, a novel procedure to align, at high spatio-temporal resolutions, multimodal signals from real-world processes and systems that exhibit diverse transient, nonlinear stochastic dynamics, such as manufacturing machines. It is based on discerning and synchronizing the process signatures of salient kinematic and dynamic events in these disparate signals. HiRA-Pro addresses the challenge of aligning data with sub-millisecond phenomena, where traditional timestamp, external trigger, or clock-based alignment methods fall short. The effectiveness of HiRA-Pro is demonstrated in a smart manufacturing context, where it aligns data from 13+ channels acquired during 3D-printing and milling operations on an Optomec-LENS® MTS 500 hybrid machine. The aligned data is then voxelized to generate 0.25 second aligned data chunks that correspond to physical voxels on the produced part. The superiority of HiRA-Pro is further showcased through case studies in additive manufacturing, demonstrating improved machine learning-based predictive performance due to precise multimodal data alignment. Specifically, testing classification accuracies improved by almost 35% with the application of HiRA-Pro, even with limited data, allowing for precise localization of artifacts. The paper also provides a comprehensive discussion on the proposed method, its applications, and comparative qualitative analysis with a few other alignment methods. HiRA-Pro achieves temporal-spatial resolutions of 10-1000 𝜇s and 100 𝜇m in order to generate datasets that register with physical voxels on the 3D-printed and milled part. These resolutions are at least an order of magnitude finer than the existing alignment methods that employ individual timestamps, statistical correlations, or common clocks, which achieve precision of hundreds of milliseconds. 
    more » « less
  4. With the advancement and dominant service of Internet videos, the content-based video deduplication system becomes an essential and dependent infrastructure for Internet video service. However, the explosively growing video data on the Internet challenges the system design and implementation for its scalability in several ways. (1) Although the quantization-based indexing techniques are effective for searching visual features at a large scale, the costly re-training over the complete dataset must be done periodically. (2) The high-dimensional vectors for visual features demand increasingly large SSD space, degrading I/O performance. (3) Videos crawled from the Internet are diverse, and visually similar videos are not necessarily the duplicates, increasing deduplication complexity. (4) Most videos are edited ones. The duplicate contents are more likely discovered as clips inside the videos, demanding processing techniques with close attention to details. To address above-mentioned issues, we propose Maze, a full-fledged video deduplication system. Maze has an ANNS layer that indexes and searches the high dimensional feature vectors. The architecture of the ANNS layer supports efficient reads and writes and eliminates the data migration caused by re-training. Maze adopts the CNN-based feature and the ORB feature as the visual features, which are optimized for the specific video deduplication task. The features are compact and fully reside in the memory. Acoustic features are also incorporated in Maze so that the visually similar videos but having different audio tracks are recognizable. A clip-based matching algorithm is developed to discover duplicate contents at a fine granularity. Maze has been deployed as a production system for two years. It has indexed 1.3 billion videos and is indexing ~800 thousand videos per day. For the ANNS layer, the average read latency is 4 seconds and the average write latency is at most 4.84 seconds. The re-training over the complete dataset is no longer required no matter how many new data sets are added, eliminating the costly data migration between nodes. Maze recognizes the duplicate live streaming videos with both the similar appearance and the similar audio at a recall of 98%. Most importantly, Maze is also cost-effective. For example, the compact feature design helps save 5800 SSDs and the computation resources devoted to running the whole system decrease to 250K standard cores per billion videos. 
    more » « less
  5. In modern distributed storage systems, space efficiency and system reliability are two major concerns. As a result, contemporary storage systems often employ data deduplication and erasure coding to reduce the storage overhead and provide fault tolerance, respectively. However, little work has been done to explore the relationship between these two techniques. In this paper, we propose Reference-counter Aware Deduplication (RAD), which employs the features of deduplication into erasure coding to improve garbage collection performance when deletion occurs. RAD wisely encodes the data according to the reference counter, which is provided by the deduplication level and thus reduces the encoding overhead when garbage collection is conducted. Further, since the reference counter also represents the reliability levels of the data chunks, we additionally made some effort to explore the trade-offs between storage overhead and reliability level among different erasure codes. The experiment results show that RAD can effectively improve the GC performance by up to 24.8% and the reliability analysis shows that, with certain data features, RAD can provide both better reliability and better storage efficiency compared to the traditional Round- Robin placement. 
    more » « less