Recent progress achieved in metal-assisted chemical etching (MACE) has enabled the production of high-quality micropillar arrays for various optoelectronic applications. Si micropillars produced by MACE often show a porous Si/SiO
- PAR ID:
- 10195894
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Mechanochemistry initiated the reaction of hydrogen-terminated porous silicon (H/por-Si) powder with arginine. Samples were analyzed using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. Arginine, which was physisorbed onto the surface of por-Si, blue-shifted the peak PL intensity from ~630 nm for the H/por-Si to ~565 nm for arginine-coated por-Si. Grinding for 4 h reduced >80% of the initially 2–45 µm particles to <500 nm, but was observed to quench the PL. With appropriate rinsing and centrifugation, particles in the 100 nm range were isolated. Rinsing ground powder with water was required to remove the unreacted arginine. Without rinsing, excess arginine induced the aggregation of passivated particles. However, water reacted with the freshly ground por-Si powder producing H2. A zeta potential of +42 mV was measured for arginine-terminated por-Si particles dispersed in deionized water. This positive value was consistent with termination such that NH2 groups extended away from the surface. Furthermore, this result was confirmed by FTIR spectra, which suggested that arginine was bound to silicon through the formation of a covalent Si–O bond.more » « less
-
null (Ed.)The photoluminescence (PL) response of porous Si has potential applications in a number of sensor and bioimaging techniques. However, many questions still remain regarding how to stabilize and enhance the PL signal, as well as how PL responds to environmental factors. Regenerative electroless etching (ReEtching) was used to produce photoluminescent porous Si directly from Si powder. As etched, the material was H-terminated. The intensity and peak wavelength were greatly affected by the rinsing protocol employed. The highest intensity and bluest PL were obtained when dilute HCl(aq) rinsing was followed by pentane wetting and vacuum oven drying. Roughly half of the hydrogen coverage was replaced with –RCOOH groups by thermal hydrosilylation. Hydrosilylated porous Si exhibited greater stability in aqueous solutions than H-terminated porous Si. Pickling of hydrosilylated porous Si in phosphate buffer was used to increase the PL intensity without significantly shifting the PL wavelength. PL intensity, wavelength and peak shape responded linearly with temperature change in a manner that was specific to the surface termination, which could facilitate the use of these parameters in a differential sensor scheme that exploits the inherent inhomogeneities of porous Si PL response.more » « less
-
This paper reports the fabrication of silicon PN diode by using DNA nanostructure as the etching template for SiO2and also as the
n -dopant of Si. DNA nanotubes were deposited ontop -type silicon wafer that has a thermal SiO2layer. The DNA nanotubes catalyze the etching of SiO2by HF vapor to expose the underlying Si. The phosphate groups in the DNA nanotube were used as the doping source to locallyn -dope the Si wafer to form vertical P-N junctions. Prototype PN diodes were fabricated and exhibited expected blockage behavior with a knee voltage ofca. 0.7 V. Our work highlights the potential of DNA nanotechnology in future fabrication of nanoelectronics. -
Abstract We report the synthesis of bifunctional Ag@SiO2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl4solution into an aqueous suspension of Ag@SiO2core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO2shell
in situ , followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO2sea. By controlling the amount of HAuCl4titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO2shell, embracing catalytic activity toward the reduction of 4‐nitrophenol to 4‐aminophenol by NaBH4. While the Ag in the core provides a strong surface‐enhanced Raman scattering activity, the SiO2sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au‐catalyzed reduction of 4‐nitrothiophenol to 4‐aminothiophenol by NaBH4and Ag‐catalyzed oxidation of 4‐aminothiophenol totrans ‐4,4′‐dimercaptoazobenzene by the O2from air in the same reaction system. -
Abstract As a promising alternative to the mainstream CoFeB/MgO system with interfacial perpendicular magnetic anisotropy (PMA),
L 10‐FePd and its synthetic antiferromagnet (SAF) structure with large crystalline PMA can support spintronic devices with sufficient thermal stability at sub‐5 nm sizes. However, the compatibility requirement of preparingL 10‐FePd thin films on Si/SiO2wafers is still unmet. In this paper, high‐qualityL 10‐FePd and its SAF on Si/SiO2wafers are prepared by coating the amorphous SiO2surface with an MgO(001) seed layer. The preparedL 10‐FePd single layer and SAF stack are highly (001)‐textured, showing strong PMA, low damping, and sizeable interlayer exchange coupling, respectively. Systematic characterizations, including advanced X‐ray diffraction measurement and atomic resolution‐scanning transmission electron microscopy, are conducted to explain the outstanding performance ofL 10‐FePd layers. A fully‐epitaxial growth that starts from MgO seed layer, induces the (001) texture ofL 10‐FePd, and extends through the SAF spacer is observed. This study makes the vision of scalable spintronics more practical.