skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three-photon imaging of synthetic dyes in deep layers of the neocortex
Abstract Multiphoton microscopy has emerged as the primary imaging tool for studying the structural and functional dynamics of neural circuits in brain tissue, which is highly scattering to light. Recently, three-photon microscopy has enabled high-resolution fluorescence imaging of neurons in deeper brain areas that lie beyond the reach of conventional two-photon microscopy, which is typically limited to ~ 450 µm. Three-photon imaging of neuronal calcium signals, through the genetically-encoded calcium indicator GCaMP6, has been used to successfully record neuronal activity in deeper neocortical layers and parts of the hippocampus in rodents. Bulk-loading cells in deeper cortical layers with synthetic calcium indicators could provide an alternative strategy for labelling that obviates dependence on viral tropism and promoter penetration, particularly in non-rodent species. Here we report a strategy for visualized injection of a calcium dye, Oregon Green BAPTA-1 AM (OGB-1 AM), at 500–600 µm below the surface of the mouse visual cortex in vivo. We demonstrate successful OGB-1 AM loading of cells in cortical layers 5–6 and subsequent three-photon imaging of orientation- and direction- selective visual responses from these cells.  more » « less
Award ID(s):
1934288 1707287
PAR ID:
10195895
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Human cortical organoids, three-dimensional neuronal cultures, are emerging as powerful tools to study brain development and dysfunction. However, whether organoids can functionally connect to a sensory network in vivo has yet to be demonstrated. Here, we combine transparent microelectrode arrays and two-photon imaging for longitudinal, multimodal monitoring of human cortical organoids transplanted into the retrosplenial cortex of adult mice. Two-photon imaging shows vascularization of the transplanted organoid. Visual stimuli evoke electrophysiological responses in the organoid, matching the responses from the surrounding cortex. Increases in multi-unit activity (MUA) and gamma power and phase locking of stimulus-evoked MUA with slow oscillations indicate functional integration between the organoid and the host brain. Immunostaining confirms the presence of human-mouse synapses. Implantation of transparent microelectrodes with organoids serves as a versatile in vivo platform for comprehensive evaluation of the development, maturation, and functional integration of human neuronal networks within the mouse brain. 
    more » « less
  2. Head-mounted miniaturized two-photon microscopes are powerful tools to record neural activity with cellular resolution deep in the mouse brain during unrestrained, free-moving behavior. Two-photon microscopy, however, is traditionally limited in imaging frame rate due to the necessity of raster scanning the laser excitation spot over a large field-of-view (FOV). Here, we present two multiplexed miniature two-photon microscopes (M-MINI2Ps) to increase the imaging frame rate while preserving the spatial resolution. Two different FOVs are imaged simultaneously and then demixed temporally or computationally. We demonstrate large-scale (500×500 µm2 FOV) multiplane calcium imaging in visual cortex and prefrontal cortex in freely moving mice during spontaneous exploration, social behavior, and auditory stimulus. Furthermore, the increased speed of M-MINI2Ps also enables two-photon voltage imaging at 400 Hz over a 380×150 µm2 FOV in freely moving mice. M-MINI2Ps have compact footprints and are compatible with the open-source MINI2P. M-MINI2Ps, together with their design principles, allow the capture of faster physiological dynamics and population recordings over a greater volume than currently possible in freely moving mice, and will be a powerful tool in systems neuroscience. # Data for: Multiplexed miniaturized two-photon microscopy (M-MINI2Ps) Dataset DOI: [10.5061/dryad.kd51c5bkp](10.5061/dryad.kd51c5bkp) ## Description of the data and file structure Calcium and Voltage imaging datasets from Multiplexed Miniaturized Two-Photon Microscopy (M-MINI2P) ### Files and variables #### File: TM_MINI2P_Voltage_Cranial_VisualCortex.zip **Description:** Voltage imaging dataset acquired in mouse primary visual cortex (V1) using the TM-MINI2P system through a cranial window preparation. This .zip file contains two Tif files, corresponding to the top field of view (FOV) and the bottom field of view (FOV) of the demultiplexed recordings. #### File: TM_MINI2P_Calcium_GRIN_PFC_Auditory_Free_vs_Headfix.zip **Description:** Volumetric calcium imaging dataset from mouse prefrontal cortex (PFC) using the TM-MINI2P system with a GRIN lens implant, comparing neural responses during sound stimulation versus quiet periods, under both freely moving and head-fixed conditions. This .zip file contains 12 Tif files: top and bottom fields of view (FOVs) of the multiplexed recordings at three imaging depths (100 μm, 155 μm, and 240 μm from the end of the implanted GRIN lens), with six files from freely moving conditions and six files from head-fixed conditions. #### File: CM_MINI2P_Calcium_Cranial_VisualCortex_SocialBehavior.zip **Description:** Calcium imaging dataset from mouse primary visual cortex (V1) using the CM-MINI2P system through a cranial window, recorded during social interaction and isolated conditions. This .zip file contains 6 Tif files: multiplexed recordings from the top and bottom fields of view (FOVs), and single-FOV recordings at two imaging depths (170 µm and 250 µm). #### File: TM_MINI2P_Calcium_Cranial_VisualCortex.zip **Description:** Multi-depth calcium imaging dataset from mouse primary visual cortex (V1) using the TM-MINI2P system through a cranial window during spontaneous exploration. This .zip file contains 6 Tif files: demultiplexed recordings from two fields of view (FOV1 and FOV2) at three imaging depths (110 µm, 170 µm, and 230 µm). ## Code/software All datasets are in .tiff format and ImageJ can be used for visualization. Analysis of calcium imaging data and voltage imaging data were analyzed using CaImAn and Volpy, respectively, which are open-source packages available at [https://github.com/flatironinstitute/CaImAn](https://github.com/flatironinstitute/CaImAn). 
    more » « less
  3. Abstract Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real‐time neural dynamics in response to injury and subsequent effects on sensory processing and behaviour are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head‐restrained male and female mice to measure large‐scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI‐induced activation at the injury site, followed by a massive slow wave of calcium signal activation that travelled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two‐photon calcium imaging in the primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI‐induced travelling wave. A depression of calcium signals followed the wave, during which we observed the atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker‐evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioural measures. Neural and behavioural changes mostly recovered over hours to days in our M1‐TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanaesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury. 
    more » « less
  4. SUMMARY Head-mounted miniaturized two-photon microscopes are powerful tools to record neural activity with cellular resolution deep in the mouse brain during unrestrained, free-moving behavior. Two-photon microscopy, however, is traditionally limited in imaging frame rate due to the necessity of raster scanning the laser excitation spot over a large field-of-view (FOV). Here, we present two multiplexed miniature two-photon microscopes (M-MINI2Ps) to increase the imaging frame rate while preserving the spatial resolution. Two different FOVs are imaged simultaneously and then demixed temporally or computationally. We demonstrate large-scale (500×500 µm2FOV) multiplane calcium imaging in visual cortex and prefrontal cortex in freely moving mice for spontaneous activity and auditory stimulus evoked responses. Furthermore, the increased speed of M-MINI2Ps also enables two-photon voltage imaging at 400 Hz over a 380×150 µm2FOV in freely moving mice. M-MINI2Ps have compact footprints and are compatible with the open-source MINI2P. M-MINI2Ps, together with their design principles, allow the capture of faster physiological dynamics and population recordings over a greater volume than currently possible in freely moving mice, and will be a powerful tool in systems neuroscience. 
    more » « less
  5. Abstract Laminar-specific functional magnetic resonance imaging (fMRI) has been widely used to study circuit-specific neuronal activity by mapping spatiotemporal fMRI response patterns across cortical layers. Hemodynamic responses reflect indirect neuronal activity given the limitation of spatial and temporal resolution. Previously, a gradient-echo-based line-scanning fMRI (GELINE) method was proposed with high temporal (50 ms) and spatial (50 µm) resolution to better characterize the fMRI onset time across cortical layers by employing two saturation RF pulses. However, the imperfect RF saturation performance led to poor boundary definition of the reduced region of interest (ROI) and aliasing problems outside of the ROI. Here, we propose an α (alpha)-180 spin-echo-based line-scanning fMRI (SELINE) method in animals to resolve this issue by employing a refocusing 180˚ RF pulse perpendicular to the excitation slice (without any saturation RF pulse) and also achieve high spatiotemporal resolution. In contrast to GELINE signals which peaked at the superficial layer, we detected varied peaks of laminar-specific BOLD signals across deeper cortical layers using the SELINE method, indicating the well-defined exclusion of the large draining-vein effect using the spin-echo sequence. Furthermore, we applied the SELINE method with a 200 ms repetition time (TR) to sample the fast hemodynamic changes across cortical layers with a less draining vein effect. In summary, this SELINE method provides a novel acquisition scheme to identify microvascular-sensitive laminar-specific BOLD responses across cortical depth. 
    more » « less