An open-source framework for non-spatial and spatial segregation measures: the PySAL segregation module
- Award ID(s):
- 1831615
- PAR ID:
- 10195988
- Date Published:
- Journal Name:
- Journal of Computational Social Science
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2432-2717
- Page Range / eLocation ID:
- 135 to 166
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Microbial communities are typically characterized by some degree of self-organization. In biological soil crust (biocrust) communities, vertical organization of resident populations at the mm scale is driven by organismal adaptations to physicochemical microniches. However, the extent of horizontal organization and its driving processes are unknown. Using a combination of observational and genetic mapping, we provide evidence for a highly defined, horizontal self-organization (patchiness) at the mm to cm scale in a successionally early biocrust community dominated by the pioneer cyanobacteria, Microcoleus vaginatus (Microcoleaceae) and Parifilum sp. (Coleofasciculaceae). Experiments with representative isolates of each species demonstrate that the phenomenon is driven by active spatial segregation based on cross-species sensing through the exometabolome acted upon with motility responses. Further, we show that both species share the ability to enrich for specialized cyanospheres of heterotrophic bacteria at smaller scales, and that these cyanospheres are characterized by compositional host-specificity, thus expanding the reach of spatial patchiness beyond primary producers. Our results highlight the importance of specific microbial interactions in the emergence of microbiome compositional architecture and the enhancement of microbial diversity.more » « less
-
Abstract Studying host-associated microbiome assembly is key to understanding microbial and host evolution and health. While honey bee microbiomes have been central models for such investigations among pollinators, they overlook the diversity of eusocial dynamics and multi- kingdom interactions. Stingless bees, highly eusocial managed bees that rely on yeast for larval development, offer a valuable complementary system to study microbiome assembly, and within an eco-evolutionary framework. Using amplicon sequencing, metagenomics, and microbial experiments, we investigate the drivers of stingless bee microbiome assembly. We reveal a spatially structured, site-adapted microbiome, where high microbial influx hive components are segregated from the brood, which harbors a stable, multi-kingdom community. We show that the brood microbiome is not only physically protected but also actively maintained through highly selective bacterial-fungal interactions. Our findings uncover multi-layered mechanisms shaping an eusocial insect microbiome, from host biology to cross-kingdom interactions, while providing critical insights into microbiome maintenance of important pollinators.more » « less
An official website of the United States government

