skip to main content

Title: Towards quantum belief propagation for LDPC decoding in wireless networks
We present Quantum Belief Propagation (QBP), a Quantum Annealing (QA) based decoder design for Low Density Parity Check (LDPC) error control codes, which have found many useful applications in Wi-Fi, satellite communications, mobile cellular systems, and data storage systems. QBP reduces the LDPC decoding to a discrete optimization problem, then embeds that reduced design onto quantum annealing hardware. QBP's embedding design can support LDPC codes of block length up to 420 bits on real state-of-the-art QA hardware with 2,048 qubits. We evaluate performance on real quantum annealer hardware, performing sensitivity analyses on a variety of parameter settings. Our design achieves a bit error rate of 10--8 in 20 μs and a 1,500 byte frame error rate of 10--6 in 50 μs at SNR 9 dB over a Gaussian noise wireless channel. Further experiments measure performance over real-world wireless channels, requiring 30 μs to achieve a 1,500 byte 99.99% frame delivery rate at SNR 15-20 dB. QBP achieves a performance improvement over an FPGA based soft belief propagation LDPC decoder, by reaching a bit error rate of 10--8 and a frame error rate of 10--6 at an SNR 2.5--3.5 dB lower. In terms of limitations, QBP currently cannot realize practical protocol-sized more » (e.g., Wi-Fi, WiMax) LDPC codes on current QA processors. Our further studies in this work present future cost, throughput, and QA hardware trend considerations. « less
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the 26th Annual International Conference on Mobile Computing and Networking (ACM MobiCom)
Sponsoring Org:
National Science Foundation
More Like this
  1. User demand for increasing amounts of wireless capacity continues to outpace supply, and so to meet this demand, significant progress has been made in new MIMO wireless physical layer techniques. Higher-performance systems now remain impractical largely only because their algorithms are extremely computationally demanding. For optimal performance, an amount of computation that increases at an exponential rate both with the number of users and with the data rate of each user is often required. The base station's computational capacity is thus becoming one of the key limiting factors on wireless capacity. QuAMax is the first large MIMO cloud-based radio access network design to address this issue by leveraging quantum annealing on the problem. We have implemented QuAMax on the 2,031 qubit D-Wave 2000Q quantum annealer, the state-of-the-art in the field. Our experimental results evaluate that implementation on real and synthetic MIMO channel traces, showing that 30 US of compute time on the 2000Q can enable 48 user, 48 AP antenna BPSK communication at 20 dB SNR with a bit error rate of 10^(-6) and a 1,500 byte frame error rate of 10^(-4).
  2. This paper proposes a finite-precision decoding method for low-density parity-check (LDPC) codes that features the three steps of Reconstruction, Computation, and Quantization (RCQ). Unlike Mutual-Information-Maximization Quantized Belief Propagation (MIM-QBP), RCQ can approximate either belief propagation or Min-Sum decoding. MIM-QBP decoders do not work well when the fraction of degree-2 variable nodes is large. However, sometimes a large fraction of degree-2 variable nodes is used to facilitate a fast encoding structure, as seen in the IEEE 802.11 standard and the DVB-S2 standard. In contrast to MIM-QBP, the proposed RCQ decoder may be applied to any off-the-shelf LDPC code, including those with a large fraction of degree-2 variable nodes. Simulations show that a 4-bit Min-Sum RCQ decoder delivers frame error rate (FER) performance within 0.1 dB of floating point belief propagation (BP) for the IEEE 802.11 standard LDPC code in the low SNR region. The RCQ decoder actually outperforms floating point BP and Min-Sum in the high SNR region were FER less than 10 −5 . This paper also introduces Hierarchical Dynamic Quantization (HDQ) to design the time-varying non-uniform quantizers required by RCQ decoders. HDQ is a low-complexity design technique that is slightly sub-optimal. Simulation results comparing HDQ and optimal quantization onmore »the symmetric binary-input memoryless additive white Gaussian noise channel show a mutual information loss of less than 10 −6 bits, which is negligible in practice.« less
  3. The new 5G communications standard increases data rates and supports low-latency communication that places constraints on the computational complexity of channel decoders. 5G low-density parity-check (LDPC) codes have the so-called protograph-based raptor-like (PBRL) structure which offers inherent rate-compatibility and excellent performance. Practical LDPC decoder implementations use message-passing decoding with finite precision, which becomes coarse as complexity is more severely constrained. Performance degrades as the precision becomes more coarse. Recently, the information bottleneck (IB) method was used to design mutual-information-maximizing lookup tables that replace conventional finite-precision node computations. The IB approach exchanges messages represented by integers with very small bit width. This paper extends the IB principle to the flexible class of PBRL LDPC codes as standardized in 5G. The extensions include puncturing and rate-compatible IB decoder design. As an example of the new approach, a 4-bit information bottleneck decoder is evaluated for PBRL LDPC codes over a typical range of rates. Frame error rate simulations show that the proposed scheme outperforms offset min-sum decoding algorithms and operates very close to double-precision sum-product belief propagation decoding.
  4. Non-uniform message quantization techniques such as reconstruction-computation-quantization (RCQ) improve error-correction performance and decrease hardware complexity of low-density parity-check (LDPC) decoders that use a flooding schedule. Layered MinSum RCQ (L-msRCQ) enables message quantization to be utilized for layered decoders and irregular LDPC codes. We investigate field-programmable gate array (FPGA) implementations of L-msRCQ decoders. Three design methods for message quantization are presented, which we name the Lookup, Broadcast, and Dribble methods. The decoding performance and hardware complexity of these schemes are compared to a layered offset MinSum (OMS) decoder. Simulation results on a (16384, 8192) protograph-based raptor-like (PBRL) LDPC code show that a 4-bit L-msRCQ decoder using the Broadcast method can achieve a 0.03 dB improvement in error-correction performance while using 12% fewer registers than the OMS decoder. A Broadcast-based 3-bit L-msRCQ decoder uses 15% fewer lookup tables, 18% fewer registers, and 13% fewer routed nets than the OMS decoder, but results in a 0.09 dB loss in performance.
  5. In a multi-user system with multiple antennas at the base station, precoding techniques in the downlink broadcast channel allow users to detect their respective data in a non-cooperative manner. Vector Perturbation Precoding (VPP) is a non-linear variant of transmit-side channel inversion that perturbs user data to achieve full diversity order. While promising, finding an optimal perturbation in VPP is known to be an NP-hard problem, demanding heavy computational support at the base station and limiting the feasibility of the approach to small MIMO systems. This work proposes a radically different processing architecture for the downlink VPP problem, one based on Quantum Annealing (QA), to enable the applicability of VPP to large MIMO systems. Our design reduces VPP to a quadratic polynomial form amenable to QA, then refines the problem coefficients to mitigate the adverse effects of QA hardware noise. We evaluate our proposed QA based VPP (QAVP) technique on a real Quantum Annealing device over a variety of design and machine parameter settings. With existing hardware, QAVP can achieve a BER of 10 −4 with 100µs compute time, for a 6 × 6 MIMO system using 64 QAM modulation at 32 dB SNR.