skip to main content


Title: Machine Learning Enhanced Channel Selection for Unlicensed LTE
We propose a mechanism for unlicensed LTE channel selection that not only takes into account interference to and from Wi-Fi access points but also considers other LTE operators in the unlicensed band. By collecting channel utilization statistics and sharing this information periodically with other unlicensed LTE eNBs, each eNB can improve their channel selection given their limited knowledge of the full topology. While comparing our algorithm to existing solutions, we find that the similarity between sensed Wi-Fi occupation at neighboring eNBs greatly impacts the performance of channel selection algorithms. To achieve better performance across diverse scenarios, we expand on our statistical channel selection formulation to include reinforcement learning, thereby balancing the shared contextual information with historical performance. We simulate operation in the unlicensed band using our channel selection algorithm and show how Wi-Fi load and inter-cell interference estimation can jointly be used to select transmission channels for all small cells in the network. Our approaches lead to an increase in user-perceived throughput and spectral efficiency across the entire band when compared to the greedy channel selection.  more » « less
Award ID(s):
1823304
NSF-PAR ID:
10196183
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The dramatic growth in demand for mobile data service has prompted mobile network operators (MNOs) to explore new spectrum resources in unlicensed bands. MNOs have been recently allowed to extend LTE-based service called LTE-LAA over 5 GHz U-NII bands, currently occupied by Wi-Fi. To support applications with diverse QoS requirements, both LTE and Wi-Fi technologies introduce multiple priority classes with different channel contention parameters for accessing unlicensed bands. How these different priority classes affect the interplay between coexisting LTE and Wi-Fi technologies is still relatively under-explored. In this paper, we develop a simple and efficient framework that helps MNOs assess the fair coexistence between MNOs and Wi-Fi operators with prioritized channel access under the multi-channel setting. We derive an approximated closed-form solution for each MNO to pre-evaluate the probability of successful transmission (PST), average contention delay, and average throughput when adopting different priority classes to serve different traffics. MNOs and Wi-Fi operators can fit our model using measurements collected offline and/or online, and use it to further optimize their systems’ throughput and latency. Our results reveal that PSTs computed with our approximated closed-form model approach those collected from system-level simulations with around 95% accuracy under scenarios of dense network deployment density and high traffic intensity. 
    more » « less
  2. In this paper, we consider the scenario in which mobile network operators (MNOs) share network infrastructure for operating 5G new radio (NR) services in unlicensed bands, whereby they reduce their deployment cost and extend their service coverage. Conserving privacy of MNOs’ users, maintaining fairness with coexisting technologies such as Wi-Fi, and reducing communication overhead between MNOs are among top challenges limiting the feasibility and success of this sharing paradigm. To resolve the above issues, we present MatchMaker, a novel framework for joint network infrastructure and unlicensed spectrum sharing among MNOs. MatchMaker extends the 3GPP’s infrastructure sharing architecture, originally introduced for licensed bands, to have privacy-conserving protocols for managing the shared infrastructure. We also propose a novel privacy-conserving algorithm for channel assignment among MNOs. Although achieving an optimal channel assignment for MNOs over unlicensed bands dictates having global knowledge about MNOs’ network conditions and their interference zones, our channel assignment algorithm does not require such global knowledge and maximizes the cross-technology fairness for the coexisting systems. We let the manager, controlling the shared infrastructure, estimate potential interference among MNOs and Wi-Fi systems by asking MNOs to propose their preferred channel assignment and monitoring their average contention delay overtime. The manager only accepts/rejects MNOs’ proposals and builds contention graph between all co-located devices. Our results show that MatchMaker achieves fairness up to 90% of the optimal alpha-fairness-based channel assignment while still preserving MNOs’ privacy. 
    more » « less
  3. As several new spectrum bands are opening up for shared use, a new paradigm of Diverse Band-aware Dynamic Spectrum Access (d-DSA) has emerged. d-DSA equips a secondary device with software defined radios (SDRs) and utilize whitespaces (or idle channels) in multiple bands, including but not limited to TV, LTE, Citizen Broadband Radio Service (CBRS), unlicensed ISM. In this paper, we propose a decentralized, online multi-agent reinforcement learning based cross-layer BAnd selection and Routing Design (BARD) for such d-DSA networks. BARD not only harnesses whitespaces in multiple spectrum bands, but also accounts for unique electro-magnetic characteristics of those bands to maximize the desired quality of service (QoS) requirements of heterogeneous message packets; while also ensuring no harmful interference to the primary users in the utilized band. Our extensive experiments demonstrate that BARD outperforms the baseline dDSAaR algorithm in terms of message delivery ratio, however, at a relatively higher network latency, for varying number of primary and secondary users. Furthermore, BARD greatly outperforms its single-band DSA variants in terms of both the metrics in all considered scenarios. 
    more » « less
  4. We consider the problem of spectrum sharing by multiple cellular operators. We propose a novel deep Reinforcement Learning (DRL)-based distributed power allocation scheme which utilizes the multi-agent Deep Deterministic Policy Gradient (MA-DDPG) algorithm. In particular, we model the base stations (BSs) that belong to the multiple operators sharing the same band, as DRL agents that simultaneously determine the transmit powers to their scheduled user equipment (UE) in a synchronized manner. The power decision of each BS is based on its own observation of the radio environment (RF) environment, which consists of interference measurements reported from the UEs it serves, and a limited amount of information obtained from other BSs. One advantage of the proposed scheme is that it addresses the single-agent non-stationarity problem of RL in the multi-agent scenario by incorporating the actions and observations of other BSs into each BS's own critic which helps it to gain a more accurate perception of the overall RF environment. A centralized-training-distributed-execution framework is used to train the policies where the critics are trained over the joint actions and observations of all BSs while the actor of each BS only takes the local observation as input in order to produce the transmit power. Simulation with the 6 GHz Unlicensed National Information Infrastructure (U-NII)-5 band shows that the proposed power allocation scheme can achieve better throughput performance than several state-of-the-art approaches. 
    more » « less
  5. Tomorrow's massive-scale IoT sensor networks are poised to drive uplink traffic demand, especially in areas of dense deployment. To meet this demand, however, network designers leverage tools that often require accurate estimates of Channel State Information (CSI), which incurs a high overhead and thus reduces network throughput. Furthermore, the overhead generally scales with the number of clients, and so is of special concern in such massive IoT sensor networks. While prior work has used transmissions over one frequency band to predict the channel of another frequency band on the same link, this paper takes the next step in the effort to reduce CSI overhead: predict the CSI of a nearby but distinct link. We propose Cross-Link Channel Prediction (CLCP), a technique that leverages multi-view representation learning to predict the channel response of a large number of users, thereby reducing channel estimation overhead further than previously possible. CLCP's design is highly practical, exploiting existing transmissions rather than dedicated channel sounding or extra pilot signals. We have implemented CLCP for two different Wi-Fi versions, namely 802.11n and 802.11ax, the latter being the leading candidate for future IoT networks. We evaluate CLCP in two large-scale indoor scenarios involving both line-of-sight and non-line-of-sight transmissions with up to 144 different 802.11ax users and four different channel bandwidths, from 20 MHz up to 160 MHz. Our results show that CLCP provides a 2× throughput gain over baseline and a 30% throughput gain over existing prediction algorithms. 
    more » « less