skip to main content


Title: Phosphonate cycling supports methane and ethylene supersaturation in the phosphate‐depleted western North Atlantic Ocean
Abstract

In oligotrophic ocean regions, dissolved organic phosphorus (DOP) plays a prominent role as a source of phosphorus (P) to microorganisms. An important bioavailable component of DOP is phosphonates, organophosphorus compounds with a carbon‐phosphorus (C‐P) bond, which are ubiquitous in high molecular weight dissolved organic matter (HMWDOM). In addition to being a source of P, the degradation of phosphonates by the bacterial C‐P lyase enzymatic pathway causes the release of trace hydrocarbon gases relevant to climate and atmospheric chemistry. In this study, we investigated the roles of phosphate and phosphonate cycling in the production of methane (CH4) and ethylene (C2H4) in the western North Atlantic Ocean, a region that features a transition in phosphate concentrations from coastal to open ocean waters. We observed an inverse relationship between phosphate and the saturation state of CH4and C2H4in the water column, and between phosphate and the relative abundance of the C‐P lyase marker genephnJ. In phosphate‐depleted waters, methylphosphonate and 2‐hydroxyethylphosphonate, the C‐P lyase substrates that yield CH4and C2H4, respectively, were readily degraded in proportions consistent with their abundance and bioavailability in HMWDOM and with the concentrations of CH4and C2H4in the water column. We conclude that phosphonate degradation through the C‐P lyase pathway is an important source and a common production pathway of CH4and C2H4in the phosphate‐depleted surface waters of the western North Atlantic Ocean and that phosphate concentration can be an important control on the saturation state of these gases in the upper ocean.

 
more » « less
Award ID(s):
1634080
NSF-PAR ID:
10455526
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
65
Issue:
10
ISSN:
0024-3590
Page Range / eLocation ID:
p. 2443-2459
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the oligotrophic ocean where inorganic phosphate (Pi) concentrations are low, microorganisms supplement their nutrient requirements with phosphorus (P) extracted from dissolved organic matter (DOM). Most P in DOM is bound as phosphate esters, which are hydrolyzed by phosphoesterases to Pi. However, a large fraction of DOM‐P occurs as phosphonates, reduced organophosphorus compounds with a CP bond that do not yield Pithrough simple ester hydrolysis alone. Phosphonates require an additional step that cleaves the CP bond and oxidizes P(III) to P(V) to yield Pi. Most phosphonates are metabolized by the C‐P lyase pathway, which cleaves CP bonds and oxidizes phosphonates to Pi, enabling microbial assimilation. While the activity of common phosphoesterases such as alkaline phosphatase and phosphodiesterase can be measured by a fluorescent assay, a comparable method to assess C‐P lyase activity (CLA) in natural water samples does not exist. To address this, we synthesized a dansyl‐labeled phosphonate compound, and measured its hydrolysis by C‐P lyase using high performance liquid chromatography. We found that laboratory cultures of marine bacteria expressing the C‐P lyase pathway are able to hydrolyze the dansyl phosphonate, while bacteria expressing other phosphonate degradation pathways do not. Finally, we performed several field tests of the assay to measure water column profiles of CLA at Sta. ALOHA in the North Pacific Subtropical Gyre. Activity was elevated near the deep chlorophyll maximum suggesting high levels of phosphonate degradation in that region.

     
    more » « less
  2. Summary

    In tropical and subtropical oceanic surface waters phosphate scarcity can limit microbial productivity. However, these environments also have bioavailable forms of phosphorus incorporated into dissolved organic matter (DOM) that microbes with the necessary transport and hydrolysis metabolic pathways can access to supplement their phosphorus requirements. In this study we evaluated how the environment shapes the abundance and taxonomic distribution of the bacterial carbon–phosphorus (C–P) lyase pathway, an enzyme complex evolved to extract phosphate from phosphonates. Phosphonates are organophosphorus compounds characterized by a highly stable C–P bond and are enriched in marine DOM. Similar to other known bacterial adaptions to low phosphate environments, C–P lyase was found to become more prevalent as phosphate concentrations decreased. C–P lyase was particularly enriched in the Mediterranean Sea and North Atlantic Ocean, two regions that feature sustained periods of phosphate depletion. In these regions, C–P lyase was prevalent in several lineages ofAlphaproteobacteria(Pelagibacter, SAR116,RoseobacterandRhodospirillales),Gammaproteobacteria,andActinobacteria. The global scope of this analysis supports previous studies that infer phosphonate catabolism via C–P lyase is an important adaptive strategy implemented by bacteria to alleviate phosphate limitation and expands the known geographic extent and taxonomic affiliation of this metabolic pathway in the ocean.

     
    more » « less
  3. ABSTRACT The marine unicellular cyanobacterium Prochlorococcus is an abundant primary producer and widespread inhabitant of the photic layer in tropical and subtropical marine ecosystems, where the inorganic nutrients required for growth are limiting. In this study, we demonstrate that Prochlorococcus high-light strain MIT9301, an isolate from the phosphate-depleted subtropical North Atlantic Ocean, can oxidize methylphosphonate (MPn) and hydroxymethylphosphonate (HMPn), two phosphonate compounds present in marine dissolved organic matter, to obtain phosphorus. The oxidation of these phosphonates releases the methyl group as formate, which is both excreted and assimilated into purines in RNA and DNA. Genes encoding the predicted phosphonate oxidative pathway of MIT9301 were predominantly present in Prochlorococcus genomes from parts of the North Atlantic Ocean where phosphate availability is typically low, suggesting that phosphonate oxidation is an ecosystem-specific adaptation of some Prochlorococcus populations to cope with phosphate scarcity. IMPORTANCE Until recently, MPn was only known to be degraded in the environment by the bacterial carbon-phosphorus (CP) lyase pathway, a reaction that releases the greenhouse gas methane. The identification of a formate-yielding MPn oxidative pathway in the marine planctomycete Gimesia maris (S. R. Gama, M. Vogt, T. Kalina, K. Hupp, et al., ACS Chem Biol 14:735–741, 2019, https://doi.org/10.1021/acschembio.9b00024 ) and the presence of this pathway in Prochlorococcus indicate that this compound can follow an alternative fate in the environment while providing a valuable source of P to organisms. In the ocean, where MPn is a major component of dissolved organic matter, the oxidation of MPn to formate by Prochlorococcus may direct the flow of this one-carbon compound to carbon dioxide or assimilation into biomass, thus limiting the production of methane. 
    more » « less
  4. The oceanic dissolved organic phosphorus (DOP) pool is mainly composed of P-esters and, to a lesser extent, equally abundant phosphonate and P-anhydride molecules. In phosphate-limited ocean regions, diazotrophs are thought to rely on DOP compounds as an alternative source of phosphorus (P). While both P-esters and phosphonates effectively promote dinitrogen (N 2 ) fixation, the role of P-anhydrides for diazotrophs is unknown. Here we explore the effect of P-anhydrides on N 2 fixation at two stations with contrasting biogeochemical conditions: one located in the Tonga trench volcanic arc region (“volcano,” with low phosphate and high iron concentrations), and the other in the South Pacific Gyre (“gyre,” with moderate phosphate and low iron). We incubated surface seawater with AMP (P-ester), ATP (P-ester and P-anhydride), or 3polyP (P-anhydride) and determined cell-specific N 2 fixation rates, nifH gene abundance, and transcription in Crocosphaera and Trichodesmium . Trichodesmium did not respond to any DOP compounds added, suggesting that they were not P-limited at the volcano station and were outcompeted by the low iron conditions at the gyre station. Conversely, Crocosphaera were numerous at both stations and their specific N 2 fixation rates were stimulated by AMP at the volcano station and slightly by 3polyP at both stations. Heterotrophic bacteria responded to ATP and 3polyP additions similarly at both stations, despite the contrasting phosphate and iron availability. The use of 3polyP by Crocosphaera and heterotrophic bacteria at both low and moderate phosphate concentrations suggests that this compound, in addition to being a source of P, can be used to acquire energy for which both groups compete. P-anhydrides may thus leverage energy restrictions to diazotrophs in the future stratified and nutrient-impoverished ocean. 
    more » « less
  5. Abstract

    A mechanistic understanding of dissolved organic phosphorus (DOP) utilization, and its role in the marine P cycle, requires knowledge of DOP molecular composition. In this study, a recently developed approach coupling electrodialysis and reverse osmosis with solution31P‐NMR analysis was used to examine DOP composition within a tidally dominated salt‐marsh estuary (North Inlet, South Carolina) over seasonal and tidal time frames. The isolation technique allowed for near complete recovery of the DOP pool (90% ± 13%;n= 12) with six broad compound classes quantified: phosphonates, phosphomonoesters, phosphodiesters, pyrophosphate, di‐ and tri‐phosphate nucleotides (nucleoPα), and polyphosphate. Our results indicate that phosphomonoesters (ca. 61%) and phosphodiesters (ca. 31%) comprise the majority of the DOP pool, with relatively small contributions from pyrophosphates (ca. 4%), phosphonates (ca. 2%), nucleoPα(ca. 1%), and polyphosphates (ca. 1%). The study found no significant differences in DOP composition or concentration between tidal stages, despite significant tidal changes in dissolved organic nitrogen (DON):DOP stoichiometry. Significant seasonal variation was observed, with higher concentrations of phosphonates, nucleoPα, and monophosphates and lower phosphomonoester concentrations in Fall relative to all other seasons. We hypothesize that these seasonal variations reflect the balance between specific compound class seasonal production, lability, and local P demands associated with marine vs. terrestrial sources. Our results indicate that DOP composition exists at a dynamic equilibrium that is strongly conserved across diverse marine environments.

     
    more » « less