skip to main content


Title: Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures

In the presence of Lewis acid salts, the cyclic ether, dioxolane (DOL), is known to undergo ring-opening polymerization inside electrochemical cells to form solid-state polymer batteries with good interfacial charge-transport properties. Here we report that LiNO3, which is unable to ring-open DOL, possesses a previously unknown ability to coordinate with and strain DOL molecules in bulk liquids, completely arresting their crystallization. The strained DOL electrolytes exhibit physical properties analogous to amorphous polymers, including a prominent glass transition, elevated moduli, and low activation entropy for ion transport, but manifest unusually high, liquidlike ionic conductivities (e.g., 1 mS/cm) at temperatures as low as −50 °C. Systematic electrochemical studies reveal that the electrolytes also promote reversible cycling of Li metal anodes with high Coulombic efficiency (CE) on both conventional planar substrates (1 mAh/cm2over 1,000 cycles with 99.1% CE; 3 mAh/cm2over 300 cycles with 99.2% CE) and unconventional, nonplanar/three-dimensional (3D) substrates (10 mAh/cm2over 100 cycles with 99.3% CE). Our finding that LiNO3promotes reversibility of Li metal electrodes in liquid DOL electrolytes by a physical mechanism provides a possible solution to a long-standing puzzle in the field about the versatility of LiNO3salt additives for enhancing reversibility of Li metal electrodes in essentially any aprotic liquid electrolyte solvent. As a first step toward understanding practical benefits of these findings, we create functional Li||lithium iron phosphate (LFP) batteries in which LFP cathodes with high capacity (5 to 10 mAh/cm2) are paired with thin (50 μm) lithium metal anodes, and investigate their galvanostatic electrochemical cycling behaviors.

 
more » « less
NSF-PAR ID:
10196763
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
42
ISSN:
0027-8424
Page Range / eLocation ID:
p. 26053-26060
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    LiNO3is a widely used salt‐additive that markedly improves the stability of ether‐based electrolytes at a Li metal anode but is generally regarded as incompatible with alkyl carbonates. Here we find that contrary to common wisdom, cyclic carbonate solvents such as ethylene carbonate can dissolve up to 0.7 M LiNO3without any additives, largely improving the anode reversibility. We demonstrate the significance of our findings by upgrading various state‐of‐the‐art carbonate electrolytes with LiNO3, which provides large improvements in batteries composed of thin lithium (50 μm) anode and high voltage cathodes. Capacity retentions of 90.5 % after 600 cycles and 92.5 % after 200 cycles are reported for LiNi0.6Mn0.2Co0.2O2(2 mAh cm−2, 0.5 C) and LiNi0.8Mn0.1Co0.1O2cathode (4 mAh cm−2, 0.2 C), respectively. 1 Ah pouch cells (≈300 Wh kg−1) retain more than 87.9 % after 100 cycles at 0.5 C. This work illustrates that reforming traditional carbonate electrolytes provides a scalable, cost‐effective approach towards practical LMBs.

     
    more » « less
  2. Abstract

    LiNO3is a widely used salt‐additive that markedly improves the stability of ether‐based electrolytes at a Li metal anode but is generally regarded as incompatible with alkyl carbonates. Here we find that contrary to common wisdom, cyclic carbonate solvents such as ethylene carbonate can dissolve up to 0.7 M LiNO3without any additives, largely improving the anode reversibility. We demonstrate the significance of our findings by upgrading various state‐of‐the‐art carbonate electrolytes with LiNO3, which provides large improvements in batteries composed of thin lithium (50 μm) anode and high voltage cathodes. Capacity retentions of 90.5 % after 600 cycles and 92.5 % after 200 cycles are reported for LiNi0.6Mn0.2Co0.2O2(2 mAh cm−2, 0.5 C) and LiNi0.8Mn0.1Co0.1O2cathode (4 mAh cm−2, 0.2 C), respectively. 1 Ah pouch cells (≈300 Wh kg−1) retain more than 87.9 % after 100 cycles at 0.5 C. This work illustrates that reforming traditional carbonate electrolytes provides a scalable, cost‐effective approach towards practical LMBs.

     
    more » « less
  3. Abstract

    The discovery of liquid battery electrolytes that facilitate the formation of stable solid electrolyte interphases (SEIs) to mitigate dendrite formation is imperative to enable lithium anodes in next‐generation energy‐dense batteries. Compared to traditional electrolyte solvents, tetrahydrofuran (THF)‐based electrolyte systems have demonstrated great success in enabling high‐stability lithium anodes by encouraging the decomposition of anions (instead of organic solvent) and thus generating inorganic‐rich SEIs. Herein, by employing a variety of different lithium salts (i.e., LiPF6,LiTFSI, LiFSI, and LiDFOB), it is demonstrated that electrolyte anions modulate the inorganic composition and resulting properties of the SEI. Through novel analytical time‐of‐flight secondary‐ion mass spectrometry methods, such as hierarchical clustering of depth profiles and compositional analysis using integrated yields, the chemical composition and morphology of the SEIs generated from each electrolyte system are examined. Notably, the LiDFOB electrolyte provides an exceptionally stable system to enable lithium anodes, delivering >1500 cycles at a current density of 0.5 mAh g−1and a capacity of 0.5 mAh g−1in symmetrical cells. Furthermore, Li//LFP cells using this electrolyte demonstrate high‐rate, reversible lithium storage, supplying 139 mAh g(LFP)−1at C/2 (≈0.991 mAh cm−2, @ 0.61 mA cm−2) with 87.5% capacity retention over 300 cycles (average Coulombic efficiency >99.86%).

     
    more » « less
  4. Abstract

    A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–xyO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites.

     
    more » « less
  5. Abstract

    The application of Li‐metal‐anodes (LMA) can significantly improve the energy density of state‐of‐the‐art lithium ion batteries. Lots of new electrolyte systems have been developed to form a stable solid electrolyte interphase (SEI) films, thereby achieving long‐term cycle stability of LMA. Unfortunately, the common problem faced by these electrolytes is poor oxidation stability, which rarely supports the cycling of high‐voltage Li‐metal batteries (LMBs). In this work, a new single‐component solvent dimethoxy(methyl)(3,3,3‐trifluoropropyl) silane is proposed. The electrolyte composed of this solvent and 3 mLiFSI salt successfully supports the long‐term cycle stability of limited‐Li (50 µm)||high loading LiCoO2(≈20 mg cm−2) cell at 4.6 V. Experiments and theoretical research results show that the outstanding performance of the electrolyte in high‐voltage LMBs is mainly attributed to its unique solvation structures and its great ability to build a highly stable and robust interphase on the surface of LMA and high‐voltage cathodes. Interestingly, this proposed electrolyte system builds a stable SEI film rich in LiF and Li3N on the surface of LMA by improving the two‐electron reduction activity of FSIwithout adding LiNO3, the well‐known additive used for LMBs. The design idea of the proposed electrolyte can guide the development of high‐voltage LMBs.

     
    more » « less