skip to main content


Title: Does metabolism constrain bird and mammal ranges and predict shifts in response to climate change?
Abstract

Mechanistic approaches for predicting the ranges of endotherms are needed to forecast their responses to environmental change. We test whether physiological constraints on maximum metabolic rate and the factor by which endotherms can elevate their metabolism (metabolic expansibility) influence cold range limits for mammal and bird species. We examine metabolic expansibility at the cold range boundary (MECRB) and whether species’ traits can predict variability in MECRBand then use MECRBas an initial approach to project range shifts for 210 mammal and 61 bird species. We find evidence for metabolic constraints: the distributions of metabolic expansibility at the cold range boundary peak at similar values for birds (2.7) and mammals (3.2). The right skewed distributions suggest some species have adapted to elevate or evade metabolic constraints. Mammals exhibit greater skew than birds, consistent with their diverse thermoregulatory adaptations and behaviors. Mammal and bird species that are small and occupy low trophic levels exhibit high levels of MECRB. Mammals with high MECRBtend to hibernate or use torpor. Predicted metabolic rates at the cold range boundaries represent large energetic expenditures (>50% of maximum metabolic rates). We project species to shift their cold range boundaries poleward by an average of 3.9° latitude by 2070 if metabolic constraints remain constant. Our analysis suggests that metabolic constraints provide a viable mechanism for initial projections of the cold range boundaries for endotherms. However, errors and approximations in estimating metabolic constraints (e.g., acclimation responses) and evasion of these constraints (e.g., torpor/hibernation, microclimate selection) highlight the need for more detailed, taxa‐specific mechanistic models. Even coarse considerations of metabolism will likely lead to improved predictions over exclusively considering thermal tolerance for endotherms.

 
more » « less
Award ID(s):
1632810
NSF-PAR ID:
10196863
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
8
Issue:
24
ISSN:
2045-7758
Page Range / eLocation ID:
p. 12375-12385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reversible phenotypic flexibility allows organisms to better match phenotypes to prevailing environmental conditions and may produce fitness benefits. Costs and constraints of phenotypic flexibility may limit the capacity for flexible responses but are not well understood nor documented. Costs could include expenses associated with maintaining the flexible system or with generating the flexible response. One potential cost of maintaining a flexible system is an energetic cost reflected in the basal metabolic rate (BMR), with elevated BMR in individuals with more flexible metabolic responses. We accessed data from thermal acclimation studies of birds where BMR and/or Msum(maximum cold-induced metabolic rate) were measured before and after acclimation, as a measure of metabolic flexibility, to test the hypothesis that flexibility in BMR (ΔBMR), Msum(ΔMsum), or metabolic scope (Msum − BMR; ΔScope) is positively correlated with BMR. When temperature treatments lasted at least three weeks, three of six species showed significant positive correlations between ΔBMR and BMR, one species showed a significant negative correlation, and two species showed no significant correlation. ΔMsumand BMR were not significantly correlated for any species and ΔScope and BMR were significantly positively correlated for only one species. These data suggest that support costs exist for maintaining high BMR flexibility for some bird species, but high flexibility in Msumor metabolic scope does not generally incur elevated maintenance costs.

     
    more » « less
  2. Abstract

    Facultative hyperthermia, the elevation of body temperature above normothermic levels, during heat exposure, importantly affects the water economy and heat balance of terrestrial endotherms. We currently lack a mechanistic understanding of the benefits hyperthermia provides for avian taxa.

    Facultative hyperthermia has been proposed to minimize rates of water loss via three distinct mechanisms: M1) by maintaining body temperature (Tb) above environmental temperatures (Te), heat can be lost non‐evaporatively, saving water; M2) by minimizing the thermal gradient whenTe>Tb, environmental heat gain and evaporative water loss rates are reduced; and M3) by storing heat via increases inTbwhich reduces evaporative heat loss demands and conserves water.

    Although individuals may benefit from all three mechanisms during heat exposure, the relative importance of each mechanism has not been quantified among species that differ in their body size, heat tolerance and mechanisms of evaporative heat dissipation.

    We measured resting metabolism, evaporative water loss and real‐timeTbfrom 33 species of birds representing nine orders ranging in mass from 8 to 300 g and estimated the water savings associated with each proposed mechanism. We show that facultative hyperthermia varies in its benefits among species.

    Small songbirds with comparatively low evaporative cooling capacities benefit most from (M1), and hyperthermia maintains a thermal gradient that allows non‐evaporative heat losses. Other species benefited most from (M2) minimizing evaporative losses via a reduced thermal gradient for heat gain at highTe. We found that (M3), heat storage, only improved the water economy of the sandgrouse, providing little benefit to other species.

    We propose that differences in the frequency and magnitude of hyperthermia will drive taxon‐specific differences in temperature sensitivity of tissues and enzymes and that the evolution of thermoregulatory mechanisms of evaporative heat dissipation may contribute to differences in basal metabolic rate among avian orders.

    Understanding the mechanistic basis of heat tolerance is essential to advance our understanding of the ecology of birds living in hot environments that are warming rapidly, where extreme heat events are already re‐structuring avian communities.

    Aplain language summaryis available for this article.

     
    more » « less
  3. Abstract Aim

    Biogeographical regions (realms) reflect patterns of co‐distributed species (biotas) across space. Their boundaries are set by dispersal barriers and difficulties of establishment in new locations. We extend new methods to assess these two contributions by quantifying the degree to which realms intergrade across geographical space and the contributions of individual species to the delineation of those realms. As our example, we focus on Wallace’s Line, the most enigmatic partitioning of the world’s faunas, where climate is thought to have little effect and the majority of dispersal barriers are short water gaps.

    Location

    Indo‐Pacific.

    Time period

    Present day.

    Major taxa studied

    Birds and mammals.

    Methods

    Terrestrial bird and mammal assemblages were established in 1‐degree map cells using range maps. Assemblage structure was modelled using latent Dirichlet allocation, a continuous clustering method that simultaneously establishes the likely partitioning of species into biotas and the contribution of biotas to each map cell. Phylogenetic trees were used to assess the contribution of deep historical processes. Spatial segregation between biotas was evaluated across time and space in comparison with numerous hard realm boundaries drawn by various workers.

    Results

    We demonstrate that the strong turnover between biotas coincides with the north‐western extent of the region not connected to the mainland during the Pleistocene, although the Philippines contains mixed contributions. At deeper taxonomic levels, Sulawesi and the Philippines shift to primarily Asian affinities, resulting from transgressions of a few Asian‐derived lineages across the line. The partitioning of biotas sometimes produces fragmented regions that reflect habitat. Differences in partitions between birds and mammals reflect differences in dispersal ability.

    Main conclusions

    Permanent water barriers have selected for a dispersive archipelago fauna, excluded by an incumbent continental fauna on the Sunda shelf. Deep history, such as plate movements, is relatively unimportant in setting boundaries. The analysis implies a temporally dynamic interaction between a species’ intrinsic dispersal ability, physiographic barriers, and recent climate change in the genesis of Earth’s biotas.

     
    more » « less
  4. Abstract

    The largest and tallest mountain range in the contiguous United States, the Southern Rocky Mountains, has warmed considerably in the past several decades due to anthropogenic climate change. Herein we examine how 47 mammal elevational ranges (27 rodent and 4 shrew species) have changed from their historical distributions (1886–1979) to their contemporary distributions (post 2005) along 2,400‐m elevational gradients in the Front Range and San Juan Mountains of Colorado. Historical elevational ranges were based on more than 4,580 georeferenced museum specimen and publication records. Contemporary elevational ranges were based on 7,444 records from systematic sampling efforts and museum specimen records. We constructed Bayesian models to estimate the probability a species was present, but undetected, due to undersampling at each 50‐m elevational bin for each time period and mountain range. These models leveraged individual‐level detection probabilities, the number and patchiness of detections across 50‐m bands of elevation, and a decaying likelihood of presence from last known detections. We compared 95% likelihood elevational ranges between historical and contemporary time periods to detect directional change. Responses were variable as 26 mammal ranges changed upward, 6 did not change, 11 changed downward, and 4 were extirpated locally. The average range shift was 131 m upward, while exclusively montane species shifted upward more often (75%) and displayed larger average range shifts (346 m). The best predictors of upper limit and total directional change were species with higher maximum latitude in their geographic range, montane affiliation, and the study mountain was at the southern edge of their geographic range. Thus, mammals in the Southern Rocky Mountains serve as harbingers of more changes to come, particularly for montane, cold‐adapted species in the southern portion of their ranges.

     
    more » « less
  5. Abstract As part of mitonuclear communication, retrograde and anterograde signaling helps maintain homeostasis under basal conditions. Basal conditions, however, vary across phylogeny. At the cell-level, some mitonuclear retrograde responses can be quantified by measuring the constitutive components of oxidative stress, the balance between reactive oxygen species (ROS) and antioxidants. ROS are metabolic by-products produced by the mitochondria that can damage macromolecules by structurally altering proteins and inducing mutations in DNA, among other processes. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. ROS are also considered to be regulated through a retrograde signaling cascade from the mitochondria to the nucleus. These cellular pathways may have implications at the whole-animal level as well. For example, birds have higher basal metabolic rates, higher blood glucose concentration, and longer lifespans than similar sized mammals, however, the literature is divergent on whether oxidative stress is higher in birds compared with mammals. Herein, we collected literature values for whole-animal metabolism of birds and mammals. Then, we collected cellular metabolic rate data from primary fibroblast cells isolated from birds and mammals and we collected blood from a phylogenetically diverse group of birds and mammals housed at zoos and measured several parameters of oxidative stress. Additionally, we reviewed the literature on basal-level oxidative stress parameters between mammals and birds. We found that mass-specific metabolic rates were higher in birds compared with mammals. Our laboratory results suggest that cellular basal metabolism, total antioxidant capacity, circulating lipid damage, and catalase activity were significantly lower in birds compared with mammals. We found no body-size correlation on cellular metabolism or oxidative stress. We also found that most oxidative stress parameters significantly correlate with increasing age in mammals, but not in birds; and that correlations with reported maximum lifespans show different results compared with correlations with known aged birds. Our literature review revealed that basal levels of oxidative stress measurements for birds were rare, which made it difficult to draw conclusions. 
    more » « less