Many arctic‐alpine plant genera have undergone speciation during the Quaternary. The bases for these radiations have been ascribed to geographic isolation, abiotic and biotic differences between populations, and/or hybridization and polyploidization. The Cordilleran
- PAR ID:
- 10196872
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 4
- Issue:
- 20
- ISSN:
- 2045-7758
- Format(s):
- Medium: X Size: p. 3940-3959
- Size(s):
- p. 3940-3959
- Sponsoring Org:
- National Science Foundation
More Like this
-
High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species-rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain-influenced and lowland Amazonian sister pairs inferred from a 756-gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 My with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors don’t differ between mountain-influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode.more » « less
-
Emerson, B. (Ed.)High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species‐rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain‐influenced and lowland Amazonian sister pairs inferred from a 756‐gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 million years with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors do not differ between mountain‐influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode.more » « less
-
Abstract Rapid speciation events, with taxa generated over a short time period, are among the most investigated biological phenomena. However, molecular systematics often reveals contradictory results compared with morphological/phenotypical diagnoses of species under scenarios of recent and rapid diversification. In this study, we used molecular data from an average of over 29 000 loci per sample from RADseq to reconstruct the diversification history and delimit the species boundary in a short‐winged grasshopper species complex (
group), where Pleistocene diversification has been hypothesized to generate more than 20 putative species with distinct male genitalic shapes. We found that, based on a maximum likelihood molecular phylogeny, each morphological species indeed forms a monophyletic group, contrary to the result from a previous mitochondrial DNA sequence study. By dating the diversification events, the species complex is estimated to have diversified during the Late Pleistocene, supporting the recent radiation hypothesis. Furthermore, coalescent‐based species delimitation analyses provide quantitative support for independent genetic lineages, which corresponds to the morphologically defined species. Our results also showed that male genitalic shape may not be predicted by evolutionary distance among species, not only indicating that this trait is labile, but also implying that selection may play a role in character divergence. Additionally, our findings suggest that the rapid speciation events in this flightless grasshopper complex might be primarily associated with the fragmentation of their grassland habitats during the Late Pleistocene. Collectively, our study highlights the importance of integrating multiple sources of information to delineate species, especially for a species complex that diversified rapidly, and whose divergence may be linked to ecological processes that create geographic isolation (i.e. fragmented habitats), as well as selection acting on characters with direct consequences for reproductive isolation (i.e. genitalic divergence).Melanoplus scudderi -
Explanations for areas of endemism often involve relative climatic stability, or low climate velocity, over time scales ranging from the Pleistocene to the late Cenozoic. Given that many narrowly endemic taxa in forested landscapes display discrete habitat associations, habitat stability should be similarly important for endemic persistence. Furthermore, while past climate variability is exceedingly difficult to quantify on millennial time scales, past distributions of habitats may be robustly inferred from paleoecological records. The Olympic Peninsula, Washington, supports a biota with several insular features including 29 endemic plant and animal taxa. Here I present the geographic distribution and habitat of the endemic taxa, and then examine the vegetation stability of the past 14,300 years from five pollen records associated with discrete vegetation zones on the peninsula. I show that 11 endemics have distributions centered on dry alpine scree and rock in the northeastern quadrant of the peninsula, and nine occur in shaded riparian forests in the southwest. Vegetation turnover during the post-glacial period was smallest in these areas. However, another long pollen record from the western peninsula reveals existence of shrub tundra and greatly reduced forest cover, indicating southward displacement of shaded riparian habitats by perhaps as much as 100 km. Although this study supports an association of postglacial vegetation stability with endemism, records spanning the glacial maximum indicate widespread tundra during long periods of the late Pleistocene and therefore suggest southern displacement of forest-associated endemics. While some of the alpine scree-associated endemics may have persisted in situ, many others likely arrived via a variety of dispersal trajectories. These histories include dispersal from southern refugia towards ocean barriers preventing further northward dispersal, contraction from more widespread distributions, and recent divergence from sister taxa. This study shows that paleoecological records can cast strong doubt on the inference that areas of endemism necessarily imply in situ glacial survival.more » « less
-
Abstract Aim We aim to test the biogeographic drivers of diversification and gene‐flow at the Isthmus of Panama using a species complex of suboscine birds as a case study. We specifically evaluate whether diversification in these birds is better explained by continuous parapatry or a Refuge Model of periodic isolation and gene‐flow due glacial cycling.
Location The Isthmus of Panama (Neotropics).
Taxon Pachyramphus aglaiae andPachyramphus homochrous (Aves: Tityridae).Methods We develop an approach to distinguish among the two biogeographic hypotheses—parapatric ecological speciation versus climatically mediated speciation—by making explicit predictions for demographic history, niche evolution and change in geographic connectivity over time. We sequenced genome‐wide markers (ultraconserved elements) to estimate the evolutionary and demographic history of this group. We applied both phylogenomic network analyses and demographic modelling using a supervised machine learning approach. These genetic analyses were combined with a novel distribution modelling method that estimates the probability of interspecies contact as a function of climatic conditions through time.
Results We found that both spatial and genetic analyses revealed concordant results. All speciation events occurred during the Pleistocene and were characterized by non‐continuous gene‐flow, supporting a scenario of climate‐mediated diversification. Spatial connectivity was highest at present, consistent with our best demographic model of secondary contact.
Main conclusions This study exemplifies a mechanism by which speciation, dispersal and introgression unfold in an important region for Neotropical diversification—the Isthmus of Panama—where periods of
both isolation and introgression probably drive diversification. Overall, our results are consistent with the Refuge Model of biotic diversification, but suggest that introgression may be a crucial yet underappreciated component of this classic paradigm.