How changes in selective regimes affect trait evolution is an important open biological question. We take advantage of naturally occurring and repeated transitions from sexual to asexual reproduction in a New Zealand freshwater snail species,
Ploidy elevation is increasingly recognized as a common and important source of genomic variation. Even so, the consequences and biological significance of polyploidy remain unclear, especially in animals. Here, our goal was to identify potential life history costs and benefits of polyploidy by conducting a large multiyear common garden experiment in
- PAR ID:
- 10196884
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2045-7758
- Page Range / eLocation ID:
- p. 765-778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Potamopyrgus antipodarum , to address how evolution in an asexual context—including the potential for relaxed selection on male‐specific traits—influences sperm morphology. The occasional production of male offspring by the otherwise all‐female asexualP. antipodarum lineages affords a unique and powerful opportunity to assess the fate of sperm traits in a context where males are exceedingly rare. These comparisons revealed that the sperm produced by ‘asexual’ males are markedly distinct from sexual counterparts. We also found that the asexual male sperm harboured markedly higher phenotypic variation and was much more likely to be morphologically abnormal. Together, these data suggest that transitions to asexual reproduction might be irreversible, at least in part because male function is likely to be compromised. These results are also consistent with a scenario where relaxed selection and/or mutation accumulation in the absence of sex translates into rapid trait degeneration. -
Abstract Meiosis and syngamy generate an alternation between two ploidy stages, but the timing of these two processes varies widely across taxa, thereby generating life cycle diversity. One hypothesis suggests that life cycles with long‐lived haploid stages are correlated with selfing, asexual reproduction, or both. Though mostly studied in angiosperms, selfing and asexual reproduction are often associated with marginal habitats. Yet, in haploid‐diploid macroalgae, these two reproductive modes have subtle but unique consequences whereby predictions from angiosperms may not apply. Along the western Antarctic Peninsula, there is a thriving macroalgal community, providing an opportunity to explore reproductive system variation in haploid‐diploid macroalgae at high latitudes where endemism is common.
Plocamium sp. is a widespread and abundant red macroalga observed within this ecosystem. We sampled 12 sites during the 2017 and 2018 field seasons and used 10 microsatellite loci to describe the reproductive system. Overall genotypic richness and evenness were high, suggesting sexual reproduction. Eight sites were dominated by tetrasporophytes, but there was strong heterozygote deficiency, suggesting intergametophytic selfing. We observed slight differences in the prevailing reproductive mode among sites, possibly due to local conditions (e.g., disturbance) that may contribute to site‐specific variation. It remains to be determined whether high levels of selfing are characteristic of macroalgae more generally at high latitudes, due to the haploid‐diploid life cycle, or both. Further investigations of algal life cycles will likely reveal the processes underlying the maintenance of sexual reproduction more broadly across eukaryotes, but more studies of natural populations are required. -
Abstract Naturally occurring population variation in reproductive mode presents an opportunity for researchers to test hypotheses regarding the evolution of sex. Asexual reproduction frequently assumes a geographical pattern, in which parthenogenesis‐dominated populations are more broadly dispersed than their sexual conspecifics. We evaluate the geographical distribution of genomic signatures associated with parthenogenesis using nuclear and mitochondrial
DNA sequence data from two Japanese harvestman sister taxa,Leiobunum manubriatum andLeiobunum globosum . Asexual reproduction is putatively facultative in these species, and female‐biased localities are common in habitat margins. Past karyotypic and current cytometric work indicatesL. globosum is entirely tetraploid, whileL. manubriatum may be either diploid or tetraploid. We estimated species phylogeny, genetic differentiation, diversity, and mitonuclear discordance in females collected across the species range in order to identify range expansion toward marginal habitat, potential for hybrid origin, and persistence of asexual lineages. Our results point to northward expansion of a tetraploid ancestor ofL. manubriatum andL. globosum , coupled with support for greater male gene flow in southernL. manubriatum localities. Specimens from localities in the Tohoku and Hokkaido regions were indistinct, particularly those ofL. globosum , potentially due to little mitochondrial differentiation or haplotypic variation. AlthoughL. manubriatum overlaps withL. globosum across its entire range,L. globosum was reconstructed as monophyletic with strong support using mtDNA , and marginal support with nuclear loci. Ultimately, we find evidence for continued sexual reproduction in both species and describe opportunities to clarify the rate and mechanism of parthenogenesis. -
Abstract The relative frequency of sexual versus asexual reproduction governs the distribution of genetic diversity within and among populations. Most studies on the consequences of reproductive variation focus on the mating system (i.e., selfing vs. outcrossing) of diploid‐dominant taxa (e.g., angiosperms), often ignoring asexual reproduction. Although reproductive systems are hypothesized to be correlated with life‐cycle types, variation in the relative rates of sexual and asexual reproduction remains poorly characterized across eukaryotes. This is particularly true among the three major lineages of macroalgae (green, brown, and red). The Rhodophyta are particularly interesting, as many taxa have complex haploid–diploid life cycles that influence genetic structure. Though most marine reds have separate sexes, we show that freshwater red macroalgae exhibit patterns of switching between monoicy and dioicy in sister taxa that rival those recently shown in brown macroalgae and in angiosperms. We advocate for the investigation of reproductive system evolution using freshwater reds, as this will expand the life‐cycle types for which these data exist, enabling comparative analyses broadly across eukaryotes. Unlike their marine cousins, species in the Batrachospermales have macroscopic gametophytes attached to filamentous, often microscopic sporophytes. While asexual reproduction through monospores may occur in all freshwater reds, the Compsopogonales are thought to be exclusively asexual. Understanding the evolutionary consequences of selfing and asexual reproduction will aid in our understanding of the evolutionary ecology of all algae and of eukaryotic evolution generally.
-
Polyploidy commonly occurs in invasive species, and phenotypic plasticity (PP, the ability to alter one's phenotype in different environments) is predicted to be enhanced in polyploids and to contribute to their invasive success. However, empirical support that increased PP is frequent in polyploids and/or confers invasive success is limited. Here, we investigated if polyploids are more pre‐adapted to become invasive than diploids via the scaling of trait values and PP with ploidy level, and if post‐introduction selection has led to a divergence in trait values and PP responses between native‐ and non‐native cytotypes. We grew diploid, tetraploid (from both native North American and non‐native European ranges), and hexaploid
Solidago gigantea in pots outside with low, medium, and high soil nitrogen and phosphorus (NP) amendments, and measured traits related to growth, asexual reproduction, physiology, and insects/pathogen resistance. Overall, we found little evidence to suggest that polyploidy and post‐introduction selection shaped mean trait and PP responses. When we compared diploids to tetraploids (as their introduction into Europe was more likely than hexaploids) we found that tetraploids had greater pathogen resistance, photosynthetic capacities, and water‐use efficiencies and generally performed better under NP enrichments. Furthermore, tetraploids invested more into roots than shoots in low NP and more into shoots than roots in high NP, and this resource strategy is beneficial under variable NP conditions. Lastly, native tetraploids exhibited greater plasticity in biomass accumulation, clonal‐ramet production, and water‐use efficiency. Cumulatively, tetraploidS. gigantea possesses traits that might have predisposed and enabled them to become successful invaders. Our findings highlight that trait expression and invasive species dynamics are nuanced, while also providing insight into the invasion success and cyto‐geographic patterning ofS. gigantea that can be broadly applied to other invasive species with polyploid complexes.