skip to main content


Title: Temporal trends in genetic data and effective population size support efficacy of management practices in critically endangered dusky gopher frogs ( Lithobates sevosus )
Abstract

Monitoring temporal changes in population genetic diversity and effective population size can provide vital information on future viability. The dusky gopher frog,Lithobates sevosus, is a critically endangered species found only in coastal Mississippi, with low genetic variability as a consequence of isolation and population size reduction. Conservation management practices have been implemented, but their efficacy has not been addressed. We genotyped individuals collected 1997–2014 to determine temporal trends in population genetic variation, structure, and effective size. Observed and expected heterozygosity and allelic richness revealed temporally stable, but low, levels of genetic variation. Positive levels of inbreeding were found in each year. There was weak genetic structure among years, which can be attributed to increased effects of genetic drift and inbreeding in small populations.L. sevosusexhibited an increase in effective population size, and currently has an estimated effective size of 33.0–58.6 individuals, which is approximately half the census size. This large ratio could possibly be explained by genetic compensation. We found that management practices have been effective at maintaining and improving effective size and genetic diversity, but that additional strategies need to be implemented to enhance viability of the species.

 
more » « less
NSF-PAR ID:
10196957
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
6
Issue:
9
ISSN:
2045-7758
Format(s):
Medium: X Size: p. 2667-2678
Size(s):
p. 2667-2678
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract  
    more » « less
  2. Abstract

    For species of management concern, accurate estimates of inbreeding and associated consequences on reproduction are crucial for predicting their future viability. However, few studies have partitioned this aspect of genetic viability with respect to reproduction in a group-living social mammal. We investigated the contributions of foundation stock lineages, putative fitness consequences of inbreeding, and genetic diversity of the breeding versus nonreproductive segment of the Yellowstone National Park gray wolf population. Our dataset spans 25 years and seven generations since reintroduction, encompassing 152 nuclear families and 329 litters. We found more than 87% of the pedigree foundation genomes persisted and report influxes of allelic diversity from two translocated wolves from a divergent source in Montana. As expected for group-living species, mean kinship significantly increased over time but with minimal loss of observed heterozygosity. Strikingly, the reproductive portion of the population carried a significantly lower genome-wide inbreeding coefficients, autozygosity, and more rapid decay for linkage disequilibrium relative to the nonbreeding population. Breeding wolves had significantly longer lifespans and lower inbreeding coefficients than nonbreeding wolves. Our model revealed that the number of litters was negatively significantly associated with heterozygosity (R = −0.11). Our findings highlight genetic contributions to fitness, and the importance of the reproductively active individuals in a population to counteract loss of genetic variation in a wild, free-ranging social carnivore. It is crucial for managers to mitigate factors that significantly reduce effective population size and genetic connectivity, which supports the dispersion of genetic variation that aids in rapid evolutionary responses to environmental challenges.

     
    more » « less
  3. Abstract

    Understanding the genomic consequences of population decline is important for predicting species' vulnerability to intensifying global change. Empirical information about genomic changes in populations in the early stages of decline, especially for those still experiencing immigration, remains scarce. We used 7834 autosomal SNPs and demographic data for 288 Florida scrub jays (Aphelocoma coerulescens; FSJ) sampled in 2000 and 2008 to compare levels of genetic diversity, inbreeding, relatedness, and lengths of runs of homozygosity (ROH) between two subpopulations within dispersal distance of one another but have experienced contrasting demographic trajectories. At Archbold Biological Station (ABS), the FSJ population has been stable because of consistent habitat protection and management, while at nearby Placid Lakes Estates (PLE), the population declined precipitously due to suburban development. By the onset of our sampling in 2000, birds in PLE were already less heterozygous, more inbred, and on average more related than birds in ABS. No significant changes occurred in heterozygosity or inbreeding across the 8‐year sampling interval, but average relatedness among individuals decreased in PLE, thus by 2008 average relatedness did not differ between sites. PLE harbored a similar proportion of short ROH but a greater proportion of long ROH than ABS, suggesting one continuous population of shared demographic history in the past, which is now experiencing more recent inbreeding. These results broadly uphold the predictions of simple population genetic models based on inferred effective population sizes and rates of immigration. Our study highlights how, in just a few generations, formerly continuous populations can diverge in heterozygosity and levels of inbreeding with severe local population decline despite ongoing gene flow.

     
    more » « less
  4. Small populations with limited range are often threatened by inbreeding and reduced genetic diversity, which can reduce fitness and exacerbate population decline. One of the most extreme natural examples is the Devils Hole pupfish ( Cyprinodon diabolis ), an iconic and critically endangered species with the smallest known range of any vertebrate. This species has experienced severe declines in population size over the last 30 years and suffered major bottlenecks in 2007 and 2013, when the population shrunk to 38 and 35 individuals, respectively. Here, we analysed 30 resequenced genomes of desert pupfishes from Death Valley, Ash Meadows and surrounding areas to examine the genomic consequences of small population size. We found extremely high levels of inbreeding ( F ROH = 0.34–0.81) and an increased amount of potentially deleterious genetic variation in the Devils Hole pupfish as compared to other species, including unique, fixed loss-of-function alleles and deletions in genes associated with sperm motility and hypoxia. Additionally, we successfully resequenced a formalin-fixed museum specimen from 1980 and found that the population was already highly inbred prior to recent known bottlenecks. We thus document severe inbreeding and increased mutation load in the Devils Hole pupfish and identify candidate deleterious variants to inform management of this conservation icon. 
    more » « less
  5. Abstract

    Genetic and genomic data are increasingly used to aid conservation management of endangered species by providing insights into evolutionary histories, factors associated with extinction risks, and potential for future adaptation. For the ‘Alalā, or Hawaiian crow (Corvus hawaiiensis), genetic concerns include negative correlations between inbreeding and hatching success. However, it is unclear if low genetic diversity and inbreeding depression are consequences of a historical population bottleneck, or if ‘Alalā had historically low genetic diversity that predated human influence, perhaps as a result of earlier declines or founding events. In this study, we applied a hybridization-based sequence capture to generate a genome-wide single nucleotide polymorphism (SNP) dataset for comparing historical specimens collected in the 1890s, when ‘Alalā were more numerous, to samples taken between 1973 and 1998, when ‘Alalā population densities were near the lowest documented levels in the wild, prior to all individuals being collected for captive rearing. We found low genome-wide diversity in both sample groups, however, the modern sample group (1973 to 1998 cohort) exhibited relatively fewer polymorphic alleles, a lower proportion of polymorphic loci, and lower observed heterozygosity, consistent with a population decline and potential bottleneck effects. These results combined with a current low population size highlight the importance of continued efforts by conservation managers to mitigate inbreeding and maintain founder representation to preserve what genetic diversity remains.

     
    more » « less