skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leverage Score Sampling for Faster Accelerated Regression and ERM
Given a matrix A∈ℝn×d and a vector b∈ℝd, we show how to compute an ϵ-approximate solution to the regression problem minx∈ℝd12‖Ax−b‖22 in time Õ ((n+d⋅κsum‾‾‾‾‾‾‾√)⋅s⋅logϵ−1) where κsum=tr(A⊤A)/λmin(ATA) and s is the maximum number of non-zero entries in a row of A. Our algorithm improves upon the previous best running time of Õ ((n+n⋅κsum‾‾‾‾‾‾‾√)⋅s⋅logϵ−1). We achieve our result through a careful combination of leverage score sampling techniques, proximal point methods, and accelerated coordinate descent. Our method not only matches the performance of previous methods, but further improves whenever leverage scores of rows are small (up to polylogarithmic factors). We also provide a non-linear generalization of these results that improves the running time for solving a broader class of ERM problems.  more » « less
Award ID(s):
1740822
PAR ID:
10196969
Author(s) / Creator(s):
Date Published:
Journal Name:
Algorithmic Learning Theory
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Megow, Nicole; Smith, Adam (Ed.)
    The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-space algorithm. In this work we study interactive proofs for non-deterministic bounded space computations. While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive protocols for nondeterministic algorithms directly to get faster verifiers. More specifically, for any non-deterministic space S algorithm, we construct an interactive proof in which the verifier runs in time Õ(n+S²). This improves on the best previous bound of Õ(n+S³) and matches the result for deterministic space bounded algorithms, up to polylog(S) factors. We further generalize to alternating bounded space algorithms. For any language L decided by a time T, space S algorithm that uses d alternations, we construct an interactive proof in which the verifier runs in time Õ(n + S log(T) + S d) and the prover runs in time 2^O(S). For d = O(log(T)), this matches the best known interactive proofs for deterministic algorithms, up to polylog(S) factors, and improves on the previous best verifier time for nondeterministic algorithms by a factor of log(T). We also improve the best prior verifier time for unbounded alternations by a factor of S. Using known connections of bounded alternation algorithms to bounded depth circuits, we also obtain faster verifiers for bounded depth circuits with unbounded fan-in. 
    more » « less
  2. We study the bit complexity of two related fundamental computational problems in linear algebra and control theory. Our results are: (1) An Õ(n^{ω+3}a+n⁴a²+n^ωlog(1/ε)) time algorithm for finding an ε-approximation to the Jordan Normal form of an integer matrix with a-bit entries, where ω is the exponent of matrix multiplication. (2) An Õ(n⁶d⁶a+n⁴d⁴a²+n³d³log(1/ε)) time algorithm for ε-approximately computing the spectral factorization P(x) = Q^*(x)Q(x) of a given monic n× n rational matrix polynomial of degree 2d with rational a-bit coefficients having a-bit common denominators, which satisfies P(x)⪰0 for all real x. The first algorithm is used as a subroutine in the second one. Despite its being of central importance, polynomial complexity bounds were not previously known for spectral factorization, and for Jordan form the best previous best running time was an unspecified polynomial in n of degree at least twelve [Cai, 1994]. Our algorithms are simple and judiciously combine techniques from numerical and symbolic computation, yielding significant advantages over either approach by itself. 
    more » « less
  3. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    We consider the problem of approximate counting of triangles and longer fixed length cycles in directed graphs. For triangles, Tětek [ICALP'22] gave an algorithm that returns a (1±ε)-approximation in Õ(n^ω/t^{ω-2}) time, where t is the unknown number of triangles in the given n node graph and ω < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running time is, within polylogarithmic factors the same as that for multiplying an n× n/t matrix by an n/t × n matrix. We then extend our framework to obtain the first nontrivial (1± ε)-approximation algorithms for the number of h-cycles in a graph, for any constant h ≥ 3. Our running time is Õ(MM(n,n/t^{1/(h-2)},n)), the time to multiply n × n/(t^{1/(h-2)}) by n/(t^{1/(h-2)) × n matrices. Finally, we show that under popular fine-grained hypotheses, this running time is optimal. 
    more » « less
  4. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    We study the Matrix Multiplication Verification Problem (MMV) where the goal is, given three n × n matrices A, B, and C as input, to decide whether AB = C. A classic randomized algorithm by Freivalds (MFCS, 1979) solves MMV in Õ(n²) time, and a longstanding challenge is to (partially) derandomize it while still running in faster than matrix multiplication time (i.e., in o(n^ω) time). To that end, we give two algorithms for MMV in the case where AB - C is sparse. Specifically, when AB - C has at most O(n^δ) non-zero entries for a constant 0 ≤ δ < 2, we give (1) a deterministic O(n^(ω-ε))-time algorithm for constant ε = ε(δ) > 0, and (2) a randomized Õ(n²)-time algorithm using δ/2 ⋅ log₂ n + O(1) random bits. The former algorithm is faster than the deterministic algorithm of Künnemann (ESA, 2018) when δ ≥ 1.056, and the latter algorithm uses fewer random bits than the algorithm of Kimbrel and Sinha (IPL, 1993), which runs in the same time and uses log₂ n + O(1) random bits (in turn fewer than Freivalds’s algorithm). Our algorithms are simple and use techniques from coding theory. Let H be a parity-check matrix of a Maximum Distance Separable (MDS) code, and let G = (I | G') be a generator matrix of a (possibly different) MDS code in systematic form. Our deterministic algorithm uses fast rectangular matrix multiplication to check whether HAB = HC and H(AB)^T = H(C^T), and our randomized algorithm samples a uniformly random row g' from G' and checks whether g'AB = g'C and g'(AB)^T = g'C^T. We additionally study the complexity of MMV. We first show that all algorithms in a natural class of deterministic linear algebraic algorithms for MMV (including ours) require Ω(n^ω) time. We also show a barrier to proving a super-quadratic running time lower bound for matrix multiplication (and hence MMV) under the Strong Exponential Time Hypothesis (SETH). Finally, we study relationships between natural variants and special cases of MMV (with respect to deterministic Õ(n²)-time reductions). 
    more » « less
  5. We investigate quantum algorithms for classification, a fundamental problem in machine learning, with provable guarantees. Given n d-dimensional data points, the state-of-the-art (and optimal) classical algorithm for training classifiers with constant margin by Clarkson et al. runs in Õ (n+d), which is also optimal in its input/output model. We design sublinear quantum algorithms for the same task running in Õ (\sqrt{n}+\sqrt{d}), a quadratic improvement in both n and d. Moreover, our algorithms use the standard quantization of the classical input and generate the same classical output, suggesting minimal overheads when used as subroutines for end-to-end applications. We also demonstrate a tight lower bound (up to poly-log factors) and discuss the possibility of implementation on near-term quantum machines. 
    more » « less