- Award ID(s):
- 1740822
- NSF-PAR ID:
- 10196971
- Date Published:
- Journal Name:
- Neurips
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based solely on a dataset of historical interactions with the environment. This serves as an extreme test for an agent's ability to effectively use historical data which is known to be critical for efficient RL. Prior work in offline RL has been confined almost exclusively to model-free RL approaches. In this work, we present MOReL, an algorithmic framework for model-based offline RL. This framework consists of two steps: (a) learning a pessimistic MDP using the offline dataset; (b) learning a near-optimal policy in this pessimistic MDP. The design of the pessimistic MDP is such that for any policy, the performance in the real environment is approximately lower-bounded by the performance in the pessimistic MDP. This enables the pessimistic MDP to serve as a good surrogate for purposes of policy evaluation and learning. Theoretically, we show that MOReL is minimax optimal (up to log factors) for offline RL. Empirically, MOReL matches or exceeds state-of-the-art results on widely used offline RL benchmarks. Overall, the modular design of MOReL enables translating advances in its components (for e.g., in model learning, planning etc.) to improvements in offline RL.more » « less
-
Pedagogical planners can provide adaptive support to students in narrative-centered learning environments by dynamically scaffolding student learning and tailoring problem scenarios. Reinforcement learning (RL) is frequently used for pedagogical planning in narrative-centered learning environments. However, RL-based pedagogical planning raises significant challenges due to the scarcity of data for training RL policies. Most prior work has relied on limited-size datasets and offline RL techniques for policy learning. Unfortunately, offline RL techniques do not support on-demand exploration and evaluation, which can adversely impact the quality of induced policies. To address the limitation of data scarcity and offline RL, we propose INSIGHT, an online RL framework for training data-driven pedagogical policies that optimize student learning in narrative-centered learning environments. The INSIGHT framework consists of three components: a narrative-centered learning environment simulator, a simulated student agent, and an RL-based pedagogical planner agent, which uses a reward metric that is associated with effective student learning processes. The framework enables the generation of synthetic data for on-demand exploration and evaluation of RL-based pedagogical planning. We have implemented INSIGHT with OpenAI Gym for a narrative-centered learning environment testbed with rule-based simulated student agents and a deep Q-learning-based pedagogical planner. Our results show that online deep RL algorithms can induce near-optimal pedagogical policies in the INSIGHT framework, while offline deep RL algorithms only find suboptimal policies even with large amounts of data.
-
This work studies the statistical limits of uniform convergence for offline policy evaluation (OPE) problems with model-based methods (for episodic MDP) and provides a unified framework towards optimal learning for several well-motivated offline tasks. Uniform OPE supΠ|Qπ−Q̂ π|<ϵ is a stronger measure than the point-wise OPE and ensures offline learning when Π contains all policies (the global class). In this paper, we establish an Ω(H2S/dmϵ2) lower bound (over model-based family) for the global uniform OPE and our main result establishes an upper bound of Õ (H2/dmϵ2) for the \emph{local} uniform convergence that applies to all \emph{near-empirically optimal} policies for the MDPs with \emph{stationary} transition. Here dm is the minimal marginal state-action probability. Critically, the highlight in achieving the optimal rate Õ (H2/dmϵ2) is our design of \emph{singleton absorbing MDP}, which is a new sharp analysis tool that works with the model-based approach. We generalize such a model-based framework to the new settings: offline task-agnostic and the offline reward-free with optimal complexity Õ (H2log(K)/dmϵ2) (K is the number of tasks) and Õ (H2S/dmϵ2) respectively. These results provide a unified solution for simultaneously solving different offline RL problems.more » « less
-
The effectiveness of Intelligent Tutoring Systems (ITSs) often depends upon their pedagogical strategies, the policies used to decide what action to take next in the face of alternatives. We induce policies based on two general Reinforcement Learning (RL) frameworks: POMDP &. MDP, given the limited feature space. We conduct an empirical study where the RL-induced policies are compared against a random yet reasonable policy. Results show that when the contents are controlled to be equal, the MDP-based policy can improve students’ learning significantly more than the random baseline while the POMDP-based policy cannot outperform the later. The possible reason is that the features selected for the MDP framework may not be the optimal feature space for POMDP.more » « less
-
Existing offline reinforcement learning (RL) methods face a few major challenges, particularly the distributional shift between the learned policy and the behavior policy. Offline Meta-RL is emerging as a promising approach to address these challenges, aiming to learn an informative meta-policy from a collection of tasks. Nevertheless, as shown in our empirical studies, offline Meta-RL could be outperformed by offline single-task RL methods on tasks with good quality of datasets, indicating that a right balance has to be delicately calibrated between "exploring" the out-of-distribution state-actions by following the meta-policy and "exploiting" the offline dataset by staying close to the behavior policy. Motivated by such empirical analysis, we propose model-based offline ta-RL with regularized policy optimization (MerPO), which learns a meta-model for efficient task structure inference and an informative meta-policy for safe exploration of out-of-distribution state-actions. In particular, we devise a new meta-Regularized model-based Actor-Critic (RAC) method for within-task policy optimization, as a key building block of MerPO, using both conservative policy evaluation and regularized policy improvement; and the intrinsic tradeoff therein is achieved via striking the right balance between two regularizers, one based on the behavior policy and the other on the meta-policy. We theoretically show that the learnt policy offers guaranteed improvement over both the behavior policy and the meta-policy, thus ensuring the performance improvement on new tasks via offline Meta-RL. Our experiments corroborate the superior performance of MerPO over existing offline Meta-RL methods.more » « less