Building upon our two years of research on the use of makerspaces in undergraduate engineering programs, we engaged in a large-scale data collection from students enrolled in undergraduate engineering preparation programs with affiliated makerspaces established for a minimum of three years. Using web searches, and other sources of information (e.g. references from other researchers or faculty members), we have identified 28 institutions that met our criteria. Working with a third party, we gathered over 574 responses from undergraduate engineering students with makerspace experiences spread across the 28 institutions. To gather our data, we created and validated an online survey with a combination of quantitative and qualitative items. We constructed a survey with subscales aligned with motivation to learn, growth mindset, learning goal orientation, knowledge of engineering as a profession, and belongingness and inclusion, as associated with work within makerspaces. We found significant positive correlations among the variables, positive levels of motivation, growth mindset, knowledge of engineering as a profession, and belongingness. We found differences in levels for gender, engineering majors, and student class standing. We discuss the implications for our findings in the context of undergraduate engineering student learning in makerspaces.
Student perceptions of and learning in makerspaces embedded in their undergraduate engineering preparation programs.
Building upon our two years of research on the use of makerspaces in undergraduate engineering
programs, we engaged in a large-scale data collection from students enrolled in undergraduate
engineering preparation programs with affiliated makerspaces established for a minimum of
three years. Using web searches, and other sources of information (e.g. references from other
researchers or faculty members), we have identified 28 institutions that met our criteria.
Working with a third party, we gathered over 574 responses from undergraduate engineering
students with makerspace experiences spread across the 28 institutions. To gather our data, we
created and validated an online survey with a combination of quantitative and qualitative items.
We constructed a survey with subscales aligned with motivation to learn, growth mindset,
learning goal orientation, knowledge of engineering as a profession, and belongingness and
inclusion, as associated with work within makerspaces. We found significant positive
correlations among the variables, positive levels of motivation, growth mindset, knowledge of
engineering as a profession, and belongingness. We found differences in levels for gender,
engineering majors, and student class standing. We discuss the implications for our findings in
the context of undergraduate engineering student learning in makerspaces.
- Award ID(s):
- 1664271
- Publication Date:
- NSF-PAR ID:
- 10197129
- Journal Name:
- Zone 1 Conference of the American Society for Engineering Education
- Volume:
- 30699
- ISSN:
- 2332-368X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Makerspaces have become a rather common structure within engineering education programs. The spaces are used in a wide range of configurations but are typically intended to facilitate student collaboration, communication, creativity, and critical thinking, essentially giving students the opportunity to learn 21st century skills and develop deeper understanding of the processes of engineering. Makerspace structure, layout, and use has been fairly well researched, yet the impact of makerspaces on student learning is understudied, somewhat per a lack of tools to measure student learning in these spaces. We developed a survey tool to assess undergraduate engineering students’ perceptions and learning in makerspaces, considering levels of students’ motivation, professional identity, engineering knowledge, and belongingness in the context of makerspaces. Our survey consists of multiple positively-phrased (supporting a condition) and some negatively-phrased (refuting a condition) survey items correlated to each of our four constructs. Our final survey contained 60 selected response items including demographic data. We vetted the instrument with an advisory panel for an additional level of validation and piloted the survey with undergraduate engineering students at two universities collecting completed responses from 196 participants. Our reliability analysis and additional statistical calculations revealed our tool was statistically sound and was effectively gatheringmore »
-
When examining factors affecting student academic success, it is important to consider how these factors interact with one another. Students’ affective attributes are complex in nature; thus, research methods and analyses should holistically examine how these attributes interact, not simply as a set of distinct constructs. Prior research into engineering students’ affective attributes, in which we used a validated survey to assess student motivation, identity, goal orientation, sense of belonging, career outcome expectations, grit and personality traits, demonstrated a positive correlation between perceptions of belongingness in engineering and time spent in the program. Other prior research has examined interactions between affective attributes, for example, engineering identity as a predictor of grit (consistency of interest). However, more work is needed to examine the complex relationships between sense of belonging, engineering identity, future career outcome expectations and motivation, particularly for students in an engineering program undergoing curricular change. This paper describes a confirmatory factor analysis and structural equation model to examine how engineering identity, career outcome expectations and time-oriented motivation (specifically, students’ future time perspectives, or FTP) impact their sense of belonging in engineering, with grit (consistency of interest) as a moderator of these relationships. To conduct these analyses, we used surveymore »
-
There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them inmore »
-
The Guided Pathways initiative is among many reform efforts that have been implemented by hundreds of community colleges in the country. Four main practice areas are intrinsic of Guided Pathways: 1) mapping pathways to students’ end goals, 2) helping students choose and enter a program pathway, 3) keeping students on a path, and 4) ensuring that students are learning. Although this approach is an important step toward successful transfer placement, the Guided Pathways do not address the visible and invisible barriers to student success once students transfer to a 4-year institution. This paper presents a novel and holistic approach to transfer that eliminates visible and invisible barriers to student success. The Holistic and Programmatic Approach for Transfer (HPAT) model includes early and active participation of the 4-year transfer partner, structured within a well-thought-out transfer articulation agreement that builds on a joint commitment to quality and student success. Integral to the agreement is the requirement for the rigor of the curriculum at the community college to match that of the 4-year partner, along with exceptional student support, financial assistance, and mentoring from the point of admission at the community college, through transfer and up to the bachelor's or master's degree completion.more »