skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Subfunctionalization of phytochrome B1/B2 leads to differential auxin and photosynthetic responses
Abstract

Gene duplication and polyploidization are genetic mechanisms that instantly add genetic material to an organism's genome. Subsequent modification of the duplicated material leads to the evolution of neofunctionalization (new genetic functions), subfunctionalization (differential retention of genetic functions), redundancy, or a decay of duplicated genes to pseudogenes. Phytochromes are light receptors that play a large role in plant development. They are encoded by a small gene family that in tomato is comprised of five members:PHYA, PHYB1, PHYB2, PHYE,andPHYF.The most recent gene duplication within this family was in the ancestralPHYBgene. Using transcriptome profiling, co‐expression network analysis, and physiological and molecular experimentation, we show that tomatoSlPHYB1andSlPHYB2exhibit both common and non‐redundant functions.Specifically,PHYB1appears to be the major integrator of light and auxin responses, such as gravitropism and phototropism, whilePHYB1andPHYB2regulate aspects of photosynthesis antagonistically to each other, suggesting that the genes have subfunctionalized since their duplication.

 
more » « less
PAR ID:
10197207
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Plant Direct
Volume:
4
Issue:
2
ISSN:
2475-4455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis

    Gene duplicates, or paralogs, serve as a major source of new genetic material and comprise seeds for evolutionary innovation. While originally thought to be quickly lost or nonfunctionalized following duplication, now a vast number of paralogs are known to be retained in a functional state. Daughter paralogs can provide robustness through redundancy, specialize via sub-functionalization, or neo-functionalize to play new roles. Indeed, the duplication and divergence of developmental genes have played a monumental role in the evolution of animal forms (e.g., Hox genes). Still, despite their prevalence and evolutionary importance, the precise detection of gene duplicates in newly sequenced genomes remains technically challenging and often overlooked. This presents an especially pertinent problem for evolutionary developmental biology, where hypothesis testing requires accurate detection of changes in gene expression and function, often in nontraditional model species. Frequently, these analyses rely on molecular reagents designed within coding sequences that may be highly similar in recently duplicated paralogs, leading to cross-reactivity and spurious results. Thus, care is needed to avoid erroneously assigning diverged functions of paralogs to a single gene, and potentially misinterpreting evolutionary history. This perspective aims to overview the prevalence and importance of paralogs and to shed light on the difficulty of their detection and analysis while offering potential solutions.

     
    more » « less
  2. Zhang, Jianzhi (Ed.)
    Abstract The amplification and diversification of genes into large multi-gene families often mark key evolutionary innovations, but this process often creates genetic redundancy that hinders functional investigations. When the model budding yeast Saccharomyces cerevisiae transitions to anaerobic growth conditions, the cell massively induces the expression of seven serine/threonine-rich anaerobically-induced cell wall mannoproteins (anCWMPs): TIP1, TIR1, TIR2, TIR3, TIR4, DAN1, and DAN4. Here, we show that these genes likely derive evolutionarily from a single ancestral anCWMP locus, which was duplicated and translocated to new genomic contexts several times both prior to and following the budding yeast whole genome duplication (WGD) event. Based on synteny and their phylogeny, we separate the anCWMPs into four gene subfamilies. To resolve prior inconclusive genetic investigations of these genes, we constructed a set of combinatorial deletion mutants to determine their contributions toward anaerobic growth in S. cerevisiae. We found that two genes, TIR1 and TIR3, were together necessary and sufficient for the anCWMP contribution to anaerobic growth. Overexpressing either gene alone was insufficient for anaerobic growth, implying that they encode non-overlapping functional roles in the cell during anaerobic growth. We infer from the phylogeny of the anCWMP genes that these two important genes derive from an ancient duplication that predates the WGD event, whereas the TIR1 subfamily experienced gene family amplification after the WGD event. Taken together, the genetic and molecular evidence suggests that one key anCWMP gene duplication event, several auxiliary gene duplication events, and functional divergence underpin the evolution of anaerobic growth in budding yeasts. 
    more » « less
  3. Abstract Premise

    The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we usedCakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy.

    Methods

    Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response inC. maritimaand identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium.

    Results

    Cakile maritimais tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool inC. maritimaand likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved inC. maritimaabiotic stress tolerance.

    Conclusions

    These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.

     
    more » « less
  4. Intricate evolutionary events enabled the emergence of the full set of aminoacyl-tRNA synthetase (aaRS) families that define the genetic code. The diversification of aaRSs has continued in organisms from all domains of life, yielding aaRSs with unique characteristics as well as aaRS-like proteins with innovative functions outside translation. Recent bioinformatic analyses have revealed the extensive occurrence and phylogenetic diversity of aaRS gene duplication involving every synthetase family. However, only a fraction of these duplicated genes has been characterized, leaving many with biological functions yet to be discovered. Here we discuss how genomic duplication is associated with the occurrence of novel aaRSs and aaRS-like proteins that provide adaptive advantages to their hosts. We illustrate the variety of activities that have evolved from the primordial aaRS catalytic sites. This precedent underscores the need to investigate currently unexplored aaRS genomic duplications as they may hold a key to the discovery of exciting biological processes, new drug targets, important bioactive molecules, and tools for synthetic biology applications. 
    more » « less
  5. Abstract

    Gene duplications have long been recognized as a contributor to the evolution of genes with new functions. Multiple copies of genes can result from tandem duplication, from transposition to new chromosomes, or from whole-genome duplication (polyploidy). The most common fate is that one member of the pair is deleted to return the gene to the singleton state. Other paths involve the reduced expression of both copies (hypofunctionalization) that are held in duplicate to maintain sufficient quantity of function. The two copies can split functions (subfunctionalization) or can diverge to generate a new function (neofunctionalization). Retention of duplicates resulting from doubling of the whole genome occurs for genes involved with multicomponent interactions such as transcription factors and signal transduction components. In contrast, these classes of genes are underrepresented in small segmental duplications. This complementary pattern suggests that the balance of interactors affects the fate of the duplicate pair. We discuss the different mechanisms that maintain duplicated genes, which may change over time and intersect.

     
    more » « less