skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Tomato locule number and fruit size controlled by natural alleles of lc and fas
Abstract

Improving yield by increasing the size of produce is an important selection criterion during the domestication of fruit and vegetable crops. Genes controlling meristem organization and organ formation work in concert to regulate the size of reproductive organs. In tomato,lcandfascontrol locule number, which often leads to enlarged fruits compared to the wild progenitors.LCis encoded by the tomato ortholog ofWUSCHEL(WUS), whereasFASis encoded by the tomato ortholog ofCLAVATA3 (CLV3). The critical role of theWUSCLV3 feedback loop in meristem organization has been demonstrated in several plant species. We show that mutant alleles for both loci in tomato led to an expansion of theSlWUSexpression domain in young floral buds 2–3 days after initiation. Single and double mutant alleles oflcandfasmaintain higherSlWUSexpression during the development of the carpel primordia in the floral bud. This augmentation and altered spatial expression ofSlWUSprovided a mechanistic basis for the formation of multilocular and large fruits. Our results indicated thatlcandfasare gain‐of‐function and partially loss‐of‐function alleles, respectively, while both mutations positively affect the size of tomato floral meristems. In addition, expression profiling showed thatlcandfasaffected the expression of several genes in biological processes including those involved in meristem/flower development, patterning, microtubule binding activity, and sterol biosynthesis. Several differentially expressed genes co‐expressed withSlWUShave been identified, and they are enriched for functions in meristem regulation. Our results provide new insights into the transcriptional regulation of genes that modulate meristem maintenance and floral organ determinacy in tomato.

 
more » « less
PAR ID:
10197221
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Plant Direct
Volume:
3
Issue:
7
ISSN:
2475-4455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The shoot stem cell niche, contained within the shoot apical meristem (SAM) is maintained in Arabidopsis by the homeodomain proteinSHOOT MERISTEMLESS(STM).STMis a mobile protein that traffics cell‐to‐cell, presumably through plasmodesmata. In maize, theSTMhomologKNOTTED1 shows clear differences betweenmRNAand protein localization domains in theSAM. However, theSTM mRNAand protein localization domains are not obviously different in Arabidopsis, and the functional relevance ofSTMmobility is unknown. Using a non‐mobile version ofSTM(2xNLSYFPSTM), we show thatSTMmobility is required to suppress axillary meristem formation during embryogenesis, to maintain meristem size, and to precisely specify organ boundaries throughout development.STMand organ boundary genesCUP SHAPED COTYLEDON1(CUC1),CUC2andCUC3regulate each other during embryogenesis to establish the embryonicSAMand to specify cotyledon boundaries, andSTMcontrolsCUCexpression post‐embryonically at organ boundary domains. We show that organ boundary specification by correct spatial expression ofCUCgenes requiresSTMmobility in the meristem. Our data suggest thatSTMmobility is critical for its normal function in shoot stem cell control.

     
    more » « less
  2. Summary

    Many plants require prolonged exposure to cold to acquire the competence to flower. The process by which cold exposure results in competence is known as vernalization. InArabidopsis thaliana, vernalization leads to the stable repression of the floral repressorFLOWERING LOCUS Cvia chromatin modification, including an increase of trimethylation on lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2). Vernalization in pooids is associated with the stable induction of a floral promoter,VERNALIZATION1(VRN1). From a screen for mutants with a reduced vernalization requirement in the model grassBrachypodium distachyon, we identified two recessive alleles ofENHANCER OF ZESTELIKE 1(EZL1).EZL1is orthologous toA. thalianaCURLY LEAF 1, a gene that encodes the catalytic subunit ofPRC2.B. distachyon ezl1mutants flower rapidly without vernalization in long‐day (LD) photoperiods; thus,EZL1is required for the proper maintenance of the vegetative state prior to vernalization. Transcriptomic studies inezl1revealed mis‐regulation of thousands of genes, including ectopic expression of several floral homeotic genes in leaves. Loss ofEZL1results in the global reduction of H3K27me3 and H3K27me2, consistent with this gene making a major contribution toPRC2 activity inB. distachyon. Furthermore, inezl1mutants, the flowering genesVRN1andAGAMOUS(AG) are ectopically expressed and have reduced H3K27me3. Artificial microRNAknock‐down of eitherVRN1orAGinezl1‐1mutants partially restores wild‐type flowering behavior in non‐vernalized plants, suggesting that ectopic expression inezl1mutants may contribute to the rapid‐flowering phenotype.

     
    more » « less
  3. Summary

    Distyly is an intriguing floral adaptation that increases pollen transfer precision and restricts inbreeding. It has been a model system in evolutionary biology since Darwin. Although theS‐locus determines the long‐ and short‐styled morphs, the genes were unknown inTurnera. We have now identified these genes.

    We used deletion mapping to identify, and then sequence,BACclones and genome scaffolds to constructS/shaplotypes. We investigated candidate gene expression, hemizygosity, and used mutants, to explore gene function.

    Thes‐haplotype possessed 21 genes collinear with a region of chromosome 7 of grape. TheS‐haplotype possessed three additional genes and two inversions.TsSPH1was expressed in filaments and anthers,TsYUC6in anthers andTsBAHDin pistils. Long‐homostyle mutants did not possessTsBAHDand a short‐homostyle mutant did not expressTsSPH1.

    Three hemizygous genes appear to determine S‐morph characteristics inT. subulata. Hemizygosity is common to all distylous species investigated, yet the genes differ. The pistil candidate gene,TsBAHD, differs from that ofPrimula, but both may inactivate brassinosteroids causing short styles.TsYUC6is involved in auxin synthesis and likely determines pollen characteristics.TsSPH1is likely involved in filament elongation. We propose an incompatibility mechanism involvingTsYUC6andTsBAHD.

     
    more » « less
  4. Summary  
    more » « less
  5. Summary

    A network of environmental inputs and internal signaling controls plant growth, development and organ elongation. In particular, the growth‐promoting hormone gibberellin (GA) has been shown to play a significant role in organ elongation. The use of tomato as a model organism to study elongation presents an opportunity to study the genetic control of internode‐specific elongation in a eudicot species with a sympodial growth habit and substantial internodes that can and do respond to external stimuli. To investigate internode elongation, a mutant with an elongated hypocotyl and internodes but wild‐type petioles was identified through a forward genetic screen. In addition to stem‐specific elongation, this mutant, namedtomato internode elongated ‐1(tie‐1) is more sensitive to theGAbiosynthetic inhibitor paclobutrazol and has altered levels of intermediate and bioactiveGAs compared with wild‐type plants. The mutation responsible for the internode elongation phenotype was mapped toGA2oxidase 7, a classIII GA2‐oxidase in theGAbiosynthetic pathway, through a bulked segregant analysis and bioinformatic pipeline, and confirmed by transgenic complementation. Furthermore, bacterially expressed recombinantTIEprotein was shown to have bona fideGA2‐oxidase activity. These results define a critical role for this gene in internode elongation and are significant because they further the understanding of the role ofGAbiosynthetic genes in organ‐specific elongation.

     
    more » « less