skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New ages from the Shackleton Glacier area and their context in the regional tectonomagmatic evolution of the Ross orogen of Antarctica
The Ross orogenic belt in Antarctica is one of several Neoproterozoic-early Palaeozoic orogens that crisscrossed Gondwana and are associated with Gondwana’s assembly. We present new age data from the Queen Maud Mountains, Ross orogen, from areas that hitherto have lacked precise ages from the local plutonic rocks. The zircon U-Pb igneous crystallization ages (n = 7) and a hornblende 40Ar/39Ar cooling age (n = 1) constrain plutonism to primarily lie within the Cambrian to Ordovician. Cumulative zircon U-Pb crystallization age data yield polymodal age distributions (516 Ma, 506–502 Ma, and 488 Ma age peaks) that are similar to other areas of the Queen Maud-Horlick Mountains, consistent with regional magmatic flare-ups along the Pacific-Gondwana margin during these times. The ages of deformed plutons constrain deformation to the Cambrian (Series 2) to Ordovician (Lower), with some regions indicating a transition to post-tectonic magmatism and cooling at ~509-470 Ma. Collectively, the data indicate that the Queen Maud-Horlick Mountains share a similar petrotectonic history with other regions of the Pacific-Gondwana margin, providing new evidence that this tectonostratigraphic province is part of and not exotic to the larger igneous-sedimentary successions developed in the peri-Gondwana realm under a broadly convergent margin setting.  more » « less
Award ID(s):
1643713
PAR ID:
10197470
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Geology Review
ISSN:
0020-6814
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Changes in magmatism and sedimentation along the late Neoproterozoic-early Paleozoic Ross orogenic belt in Antarctica have been linked to the cessation of convergence along the Mozambique belt during the assembly of East-West Gondwana. However, these interpretations are non-unique and are based, in part, on limited thermochronological data sets spread out along large sectors of the East Antarctic margin. We report new 40Ar/39Ar hornblende, muscovite, and biotite age data for plutonic (n = 13) and metasedimentary (n = 3) samples from the Shackleton–Liv Glacier sector of the Queen Maud Mountains in Antarctica. Cumulative 40Ar/39Ar age data show polymodal age peaks (510 Ma, 491 Ma, 475 Ma) that lag peaks in U-Pb igneous crystallization ages, suggesting igneous and metamorphic cooling following magmatism within the region. The 40Ar/39Ar ages are similar to ages in other sectors of the Ross orogen, but younger than detrital mineral 40Ar/39Ar cooling ages indicative of older magmatism and cooling of unexposed inboard areas along the margin. Detrital zircon trace element abundances suggest that the widespread onset of magmatism in outboard localities of the orogen correlates with a ~560–530 Ma decrease in crustal thickness. The timing of crustal thinning recorded by zircon in magmas overlaps with other evidence for the timing of crustal extension, suggesting that the regional onset of magmatism with subsequent igneous and metamorphic cooling probably reflects slab rollback that coincided with possible global plate motion changes induced during the final assembly of Gondwana. 
    more » « less
  2. New U-Pb geochronological, Hf isotopic, heavy mineral, and sandstone petrographic results for Paleozoic clastic deposits of the Falkland/Malvinas Islands help address renewed debates on the plate tectonic history, regional paleogeography, and basin evolution of this geologic enigma prior to Mesozoic breakup of Gondwana. The Falkland/Malvinas Islands have been considered either an autochthonous part of the South American continent or part of an independent microplate displaced from the southeastern corner of Africa. We report detrital zircon U-Pb results (n = 1306 LA-ICPMS ages) for 11 sandstone samples from the Silurian-Devonian West Falkland Group (N = 7 samples, n = 837 grains) and Carboniferous-Permian Lafonia Group (N = 4 samples, n = 469 grains). Detrital zircon age distributions for the West Falkland Group point to consistent contributions from Neoproterozoic-Cambrian (650–520 Ma) and Mesoproterozoic (1100–1000 Ma) sources. Heavy mineral assemblages and sandstone petrographic data from these samples indicate significant input from recycled sediments. A potential shift in sediment sources during deposition of the Lafonia Group is indicated by the appearance of late Paleozoic (350–250 Ma) and Proterozoic (2000–1200 Ma) age populations, decreased proportions of stable heavy minerals, and a shift to juvenile Hf values for < 300 Ma zircons. The provenance change can be attributed to the onset of subduction-related arc magmatism and potential regional shortening and crustal thickening in southwestern Gondwana during the Permian transition of a passive margin into an active, retro-arc foreland basin. The detrital zircon age distributions identified here reflect potential source regions in southern Africa and/or the Transantarctic Mountains in Antarctica. These results are most readily accommodated within a Gondwana reconstruction that includes the Falkland/Malvinas Islands as a rotated microplate originating on the eastern side of southern Africa as part of the Gondwanide fold-thrust belt spanning from the Ventania region of Argentina through the Cape region of South Africa and into the Ellsworth and Pensacola mountains of Antarctica. 
    more » « less
  3. null (Ed.)
    Determining the nature and age of the 200-km-wide Chicxulub impact target rock is an essential step in advancing our understanding of the Maya Block basement. Few age constraints exist for the northern Maya Block crust, specifically the basement underlying the 66 Ma, 200 km-wide Chicxulub impact structure. The International Ocean Discovery Program-International Continental Scientific Drilling Program Expedition 364 core recovered a continuous section of basement rocks from the Chicxulub target rocks, which provides a unique opportunity to illuminate the pre-impact tectonic evolution of a terrane key to the development of the Gulf of Mexico. Sparse published ages for the Maya Block point to Mesoproterozoic, Ediacaran, Ordovician to Devonian crust are consistent with plate reconstruction models. In contrast, granitic basement recovered from the Chicxulub peak ring during Expedition 364 yielded new zircon U-Pb laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) concordant dates clustering around 334 ± 2.3 Ma. Zircon rare earth element (REE) chemistry is consistent with the granitoids having formed in a continental arc setting. Inherited zircon grains fall into three groups: 400−435 Ma, 500−635 Ma, and 940−1400 Ma, which are consistent with the incorporation of Peri-Gondwanan, Pan-African, and Grenvillian crust, respectively. Carboniferous U-Pb ages, trace element compositions, and inherited zircon grains indicate a pre-collisional continental volcanic arc located along the Maya Block’s northern margin before NW Gondwana collided with Laurentia. The existence of a continental arc along NW Gondwana suggests southward-directed subduction of Rheic oceanic crust beneath the Maya Block and is similar to evidence for a continental arc along the northern margin of Gondwana that is documented in the Suwannee terrane, Florida, USA, and Coahuila Block of NE México. 
    more » « less
  4. Abstract The Black Warrior foreland basin records sedimentation associated with the development of intersecting Ouachita and Alleghanian thrust belts along the southern margin of Laurentia. Mississippian–Pennsylvanian units in the Black Warrior basin are interpreted to be sourced from either the northern Appalachians and mid-continent or more regionally from the southern Appalachians or nearby Ouachita thrust belt. We present detrital zircon U-Pb ages and Th/U values from Paleozoic units that indicate zircon from the Mississippian Hartselle Sandstone are temporally and chemically compatible with being sourced from the southern Appalachians. Zircon mixing models suggest sediment was primarily recycled from Cambrian, Ordovician, and Devonian strata in the Appalachian Valley and Ridge, with minor influx from Piedmont units. A ca. 415 Ma zircon population requires additional input from the Maya Block of the Yucatan Peninsula or similar outboard terranes. We present zircon (U-Th)/He analysis and thermal history modeling of Paleozoic units, which detail pre-Alleghanian exhumation in the Appalachian Valley and Ridge. Both the Cambrian Chilhowee Group and Pennsylvanian Pottsville Formation exhibit (U-Th)/He dates ranging from 507 to 263 Ma with a Mississippian subset (353–329 Ma, n = 4), which indicates rapid cooling and inferred exhumation during Late Devonian–Early Mississippian Neoacadian tectonism. We propose a Mississippian drainage system that transported material along southern Appalachian structural fabrics to the juncture between Appalachian and Ouachita thrust belts followed by a sediment-routing rotation toward the Black Warrior foreland. This interpretation honors chemical-age zircon data, accounts for metamorphic grains in thin section petrography, and matches Mississippian–Pennsylvanian Black Warrior foreland lithostratigraphic relationships. 
    more » « less
  5. We present a refined global Furongian (late Cambrian) time scale derived through the application of Bayesian age modeling, using an integrative assemblage of conditioning likelihoods (age constraints) including U-Pb zircon maximum depositional ages in the Steptoean positive isotopic carbon excursion (SPICE) reference section in Smithfield Canyon (Utah, USA) and nearby McPherson Canyon (Idaho, USA); Re-Os geochronology from the SPICE-bearing interval of the Andrarum-3 core (Scania, Sweden); and new high-precision chemical abrasion−isotope dilution−thermal ionization mass spectrometry U-Pb zircon tuff ages from Avalonian Wales. We embed these radioisotopic ages within a novel probabilistic treatment of biozones to establish temporal constraints on rock accumulation rates in the Great Basin (USA), the duration of the SPICE event, and Laurentian trilobite biozones correlated to the global Cambrian time scale. Results reveal a beginning of 494.5 (+0.7/−0.6) Ma and an end of 487.3 ± 0.08 Ma for the Furongian Epoch, representing a reduction of the traditional late Cambrian by ∼30% and an extension of the Ordovician by nearly half a million years. Furthermore, the SPICE is confined to a duration of 2.6 (+0.9/−0.8) m.y. Our new approach to integrating faunal succession into Bayesian age modeling can help to constrain rock accumulation rates and possible hiatuses in sections with limited radioisotopic ages. Additionally, it offers a robust calibration tool for further refining the numerical calibration of the geologic time scale, for testing hypotheses about the rates of trilobite evolution and extinction, for evaluating causes of the SPICE, and for constraining paleoclimatic conditions including atmospheric O2 levels. 
    more » « less