skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Initial Impact of an Experiment-centric Teaching Approach in Several STEM Disciplines
According to National Science Foundation data, African American students comprise 2% of the B.S. degree recipients in the geosciences, 2.6% in physics and 3.9% in engineering, while Blacks comprise 14.9% of the college-aged population. There is therefore an urgent need for Historical Black Colleges and Universities, which produce a large number of African American STEM graduates, to increase their focus on broadening STEM participation among underrepresented black students. Thus, there are untapped opportunities to develop intervention strategies and programs to increase recruitment, retention, and success of minorities in STEM and the workforce. The Experiment Centric Pedagogy (ECP) has been successful in promoting motivation and enhancing academic achievement of African American electrical engineering students. ECP uses a portable electronic instrumentation system, paired with appropriate software and sensors, to measure a wide range of properties, such as vibration and oxygen levels. This work in progress describes the initial adaptation of an evidence-based, experiment-focused teaching approach in biology, chemistry, civil engineering, industrial engineering, transportation systems, and physics. ECP will be utilized in these disciplines in various settings, such as in traditional classrooms, teaching laboratories, and at home use by students. Instructors use ECP for in-class demonstrations, for cooperative group experiments, and for homework assignments. The paper will highlight the criteria used for selection of initial experiments to adapt, the modifications made, and resulting changes in the course delivery. Preliminary results will be provided using measures of key constructs associated with student success, such as motivation, epistemic and perceptual curiosity, engineering identity, and self-efficacy. This project is conducted at a minority serving institution and most participants are from groups historically underrepresented in STEM.  more » « less
Award ID(s):
1915614
PAR ID:
10197526
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2020 ASEE Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The COVID-19 pandemic grounded the implementation of many research projects. However, with the intervention of the NSF research grant awarded to a Historically Black College and University (HBCU), with a specific goal to increase students’ achievement in multiple STEM disciplines, the pandemic challenges provided opportunities to effectively achieve the project objectives. The Adapting an Experiment-centric Teaching Approach to Increase Student Achievement in Multiple STEM Disciplines (ETA-STEM) project aims to implement an evidence-based, experiment-focused teaching approach called Experimental Centric Pedagogy (ECP) in multiple STEM disciplines. The ECP has been shown to motivate students and increase the academic success of minority students in electrical engineering in various institutions. During the Summer of 2020, the ETA-STEM Trainees engaged in research activities to develop three instruments in their respective disciplines. This paper highlights the strategic planning of the project management team, the implementation of the ECP, a comprehensive breakdown of activities and an evaluation of effectiveness of the virtual training. The 13-week intensive virtual training using Canvas learning management system and zoom virtual platform provided the opportunity to effectively interact and collaborate with project team members. Some of the summer training activities and topics included: instrumentation and measurements in STEM fields, sensors and signal conditioning, assessing the performance of instruments and sensors, effective library and literature search, introduction to education research, writing excellent scientific papers, as well as the implementation and development of ECP curriculum with focus on home-based experiment. Prior to the training, ECP kits were shipped to the team and facilitators fully utilized the virtual platform to collaborate with team members. Overall, there was a great satisfaction and confidence with the participants designing three home-based experiments using the M1K and M2K analog devices. 
    more » « less
  2. The experiment-centric pedagogy (ECP) teaching approach is a less cumbersome way of introducing core and fundamental topics in STEM through relevant practical and hands-on sessions that are carefully incorporated into lectures. The philosophy of ECP is that students learn better by doing. Hence, it promotes the practical implementation of fundamental theories in STEM fields by using inexpensive basic elements to develop portable but extremely effective units for use by these students. The portability of these units enables these students to conduct these experiments in the comfort of their homes, while their low cost makes it highly affordable. With carefully curated experiments across different departments such as Electrical, Civil, Physics, and Computer Science, ECP has been able to develop informative experiments to calculate impedance and transient current in RLC circuits buttressing the concept of ohm’s law in electrical engineering and physics, combinational and sequential circuits such as adders, multiplexer, subtractors, decoders, counters, and shift-registers in computer Science. ECP also implemented data acquisition systems alongside experiments to demonstrate Hooke’s law with respect to stress/strain on a flat metal bar and measurement of the pressure of a thin-walled cylindrical vessel in civil engineering. These experiments help students develop a good understanding of these concepts, which are the building blocks of their respective fields. Early results of ECP have shown that there has been a significant improvement in students' interest in these STEM courses. 
    more » « less
  3. Learning critical concepts that are centered on the analysis, design, and maintenance of transportation infrastructure systems poses a measure of difficulty for undergraduates in engineering. Therefore, hands-on learning pedagogy should be an excellent precursor to increase understanding of these concepts, since the pedagogy incorporates real-life experience in the delivery. This paper describes how a hands-on learning pedagogy called experiment-centric pedagogy (ECP) has been used to teach these concepts to undergraduate students at a historically Black university. The research questions are as follows: (1) How well can ECP improve students’ understanding of concepts essential to the analysis and design of transportation infrastructure systems? (2) How has the ECP facilitated the achievement of the learning objectives of these concepts? and (3) Does an ECP increase the engagement of undergraduate students in their transportation infrastructure engineering learning and lead to measurable lasting gains? To answer these research questions, ECP was implemented and assessed when used to teach the concepts of stress and strain utilized in the analysis of bridges and other transportation infrastructure, sound used in the development and design of noise barriers, moisture content in controlling compaction of highway infrastructure systems, and degradation of infrastructure systems exposed to various environmental settings. Assessment results from 92 undergraduates reveal an increase in students’ motivation and cognitive understanding of the relevant concepts, as well as learning gains and an improved success rate compared to the traditional method of teaching. 
    more » « less
  4. This interdisciplinary, inter-institutional research initiation project is motivated by the need to develop practical strategies for broadening the participation of African American students in engineering. The central objective of the project is to conduct a comparative study of the factors affecting the success and pathways to engineering careers of African American students at a Predominantly White Institution (PWI), the University of Toledo, and a Historically Black University (Alabama Agricultural and Mechanical University). Through this research we hope to gain insight into the factors affecting the social and academic well-being of students at PWIs and HBCUs from a psychological and anthropological perspective. For students from underrepresented groups in STEM at both HBCUs and PWIs it is generally recognized that social capital in the form of familial, peer and mentor support is critical to persistence in their major field of study. However, the role that embedded networks within student groups in general, and minority engineering affinity groups in particular, play in engineering students’ identity formation and academic success is not well understood. It is also not clear how other factors including institutional support and the attitudes and beliefs of faculty and staff toward underrepresented minority students affect the ability of these students to integrate into the social and academic systems at their institutions and how these factors influence the formation and development of their identities as engineers. Here we report on the role of membership in organizations for underrepresented minority engineering students such as the National Society of Black Engineers (NSBE) in contributing to the interlinking of personal and professional identities, and to the career pathways of African American students enrolled in PWI and HBCU, respectively. 
    more » « less
  5. A cost-effective, secure, and portable electronic instrumentation equipment is used in Experiment Centric Pedagogy (ECP), formerly known as Mobile Hands-On Studio Technology and Pedagogy, as a teaching method for STEM subjects both inside and outside of the classroom. Since the Spring of 2020, ECP has been integrated into two Industrial Engineering (IE) courses: Thermodynamics and Materials Engineering. This has been done in various ways, including through student use at home and in-class demonstrations and teaching labs. During the most recent academic session (Fall 2021–Spring 2022), the effects of practical home-based experimentation and lab activities on students' attitudes, interests, and performance were examined for the Engineering Thermodynamics course. The outcomes of a survey known as the Motivated Strategies for Learning Questionnaires (MLSQ), which was given to 51 students, demonstrated better improvements in the student's motivation, epistemic, and perceptual curiosity, three crucial characteristics linked to their success. Along with the MLSQ, the Classroom Observation Protocol for Undergraduate Students (COPUS) assesses active learning in Industrial Engineering courses, and quantitative and qualitative data on the significant components of student achievement were gathered. Results obtained show that using ECP has improved students' awareness of material properties and increased their interest in learning about the thermodynamics concept of heat transfer in connection to various solid materials. 
    more » « less