skip to main content


Title: Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion
Abstract

Genetic biodiversity contributes to individual fitness, species' evolutionary potential, and ecosystem stability. Temporal monitoring of the genetic status and trends of wild populations' genetic diversity can provide vital data to inform policy decisions and management actions. However, there is a lack of knowledge regarding which genetic metrics, temporal sampling protocols, and genetic markers are sufficiently sensitive and robust, on conservation‐relevant timescales. Here, we tested six genetic metrics and various sampling protocols (number and arrangement of temporal samples) for monitoring genetic erosion following demographic decline. To do so, we utilized individual‐based simulations featuring an array of different initial population sizes, types and severity of demographic decline, andDNAmarkers [single nucleotide polymorphisms (SNPs) and microsatellites] as well as decline followed by recovery. Number of alleles markedly outperformed other indicators across all situations. The type and severity of demographic decline strongly affected power, while the number and arrangement of temporal samples had small effect. Sampling 50 individuals at as few as two time points with 20 microsatellites performed well (good power), and could detect genetic erosion while 80–90% of diversity remained. This sampling and genotyping effort should often be affordable. Power increased substantially with more samples or markers, and we observe that power of 2500SNPs was nearly equivalent to 250 microsatellites, a result of theoretical and practical interest. Our results suggest high potential for using historic collections in monitoring programs, and demonstrate the need to monitor genetic as well as other levels of biodiversity.

 
more » « less
NSF-PAR ID:
10197601
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Evolutionary Applications
Volume:
7
Issue:
9
ISSN:
1752-4571
Page Range / eLocation ID:
p. 984-998
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The development of high‐throughput sequencing technologies is dramatically increasing the use of single nucleotide polymorphisms (SNPs) across the field of genetics, but most parentage studies of wild populations still rely on microsatellites. We developed a bioinformatic pipeline for identifyingSNPpanels that are informative for parentage analysis from restriction site‐associatedDNAsequencing (RADseq) data. This pipeline includes options for analysis with or without a reference genome, and provides methods to maximize genotyping accuracy and select sets of unlinked loci that have high statistical power. We test this pipeline on small populations of Mexican gray wolf and bighorn sheep, for which parentage analyses are expected to be challenging due to low genetic diversity and the presence of many closely related individuals. We compare the results of parentage analysis acrossSNPpanels generated with or without the use of a reference genome, and betweenSNPs and microsatellites. For Mexican gray wolf, we conducted parentage analyses for 30 pups from a single cohort where samples were available from 64% of possible mothers and 53% of possible fathers, and the accuracy of parentage assignments could be estimated because true identities of parents were known a priori based on field data. For bighorn sheep, we conducted maternity analyses for 39 lambs from five cohorts where 77% of possible mothers were sampled, but true identities of parents were unknown. Analyses with and without a reference genome producedSNPpanels with ≥95% parentage assignment accuracy for Mexican gray wolf, outperforming microsatellites at 78% accuracy. Maternity assignments were completely consistent across allSNPpanels for the bighorn sheep, and were 74.4% consistent with assignments from microsatellites. Accuracy and consistency of parentage analysis were not reduced when using as few as 284SNPs for Mexican gray wolf and 142SNPs for bighorn sheep, indicating our pipeline can be used to developSNPgenotyping assays for parentage analysis with relatively small numbers of loci.

     
    more » « less
  2. Abstract

    Effective management of threatened and exploited species requires an understanding of both the genetic connectivity among populations and local adaptation. The Olympia oyster (Ostrea lurida), patchily distributed from Baja California to the central coast of Canada, has a long history of population declines due to anthropogenic stressors. For such coastal marine species, population structure could follow a continuous isolation‐by‐distance model, contain regional blocks of genetic similarity separated by barriers to gene flow, or be consistent with a null model of no population structure. To distinguish between these hypotheses inO. lurida, 13,424 single nucleotide polymorphisms (SNPs) were used to characterize rangewide population structure, genetic connectivity, and adaptive divergence. Samples were collected across the species range on the west coast of North America, from southern California to Vancouver Island. A conservative approach for detecting putative loci under selection identified 235SNPs across 129GBSloci, which were functionally annotated and analyzed separately from the remaining neutral loci. While strong population structure was observed on a regional scale in both neutral and outlier markers, neutral markers had greater power to detect fine‐scale structure. Geographic regions of reduced gene flow aligned with known marine biogeographic barriers, such as Cape Mendocino, Monterey Bay, and the currents around Cape Flattery. The outlier loci identified as under putative selection included genes involved in developmental regulation, sensory information processing, energy metabolism, immune response, and muscle contraction. These loci are excellent candidates for future research and may provide targets for genetic monitoring programs. Beyond specific applications for restoration and management of the Olympia oyster, this study lends to the growing body of evidence for both population structure and adaptive differentiation across a range of marine species exhibiting the potential for panmixia. Computational notebooks are available to facilitate reproducibility and future open‐sourced research on the population structure ofO. lurida.

     
    more » « less
  3. Abstract

    Identifying genomic signatures of natural selection can be challenging against a background of demographic changes such as bottlenecks and population expansions. Here, we disentangle the effects of demography from selection in the House Finch (Haemorhous mexicanus) using samples collected before and after a pathogen‐induced selection event. Using ddRADseq, we genotyped over 18,000SNPs across the genome in native pre‐epizootic westernUSbirds, introduced birds from Hawaii and the eastern United States, post‐epizootic eastern birds, and western birds sampled across a similar time span. We found 14% and 7% reductions in nucleotide diversity, respectively, in Hawaiian and pre‐epizootic eastern birds relative to pre‐epizootic western birds, as well as elevated levels of linkage disequilibrium and other signatures of founder events. Despite finding numerous significant frequency shifts (outlier loci) between pre‐epizootic native and introduced populations, we found no signal of reduced genetic diversity, elevated linkage disequilibrium, or outlier loci as a result of the epizootic. Simulations demonstrate that the proportion of outliers associated with founder events could be explained by genetic drift. This rare view of genetic evolution across time in an invasive species provides direct evidence that demographic shifts like founder events have genetic consequences more widespread across the genome than natural selection.

     
    more » « less
  4. Abstract

    Cross‐species transmission (CST) of bacterial pathogens has major implications for human health, livestock, and wildlife management because it determines whether control actions in one species may have subsequent effects on other potential host species. The study of bacterial transmission has benefitted from methods measuring two types of genetic variation: variable number of tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). However, it is unclear whether these data can distinguish between different epidemiological scenarios. We used a simulation model with two host species and known transmission rates (within and between species) to evaluate the utility of these markers for inferringCST. We found thatCSTestimates are biased for a wide range of parameters when based onVNTRs and a most parsimonious reconstructed phylogeny. However, estimations ofCSTrates lower than 5% can be achieved with relatively low bias using as low as 250SNPs.CSTestimates are sensitive to several parameters, including the number of mutations accumulated since introduction, stochasticity, the genetic difference of strains introduced, and the sampling effort. Our results suggest that, even with whole‐genome sequences, unbiased estimates ofCSTwill be difficult when sampling is limited, mutation rates are low, or for pathogens that were recently introduced.

     
    more » « less
  5. Abstract

    Assessments of spatial patterns of biodiversity change are essential to detect a signature of anthropogenic impacts, inform monitoring and conservation programs, and evaluate implications of biodiversity loss to humans. While taxonomic diversity (TD) is the most commonly assessed attribute of biodiversity, it misses the potential functional or phylogenetic implications of species losses or gains for ecosystems. Functional diversity (FD) and phylogenetic diversity (PD) are able to capture these important trait‐based and phylogenetic attributes of species, but their changes have to date only been evaluated over limited spatial and temporal extents. Employing a novel framework for addressing detectability, we here comprehensively assess a near half‐century of changes in localTD,FD, andPDof breeding birds across much of North America to examine levels of congruency in changes among these biodiversity facets and their variation across spatial and environmental gradients. Time‐series analysis showed significant and continuous increases in all three biodiversity attributes until ca. 2000, followed by a slow decline since. Comparison of avian diversity at the beginning and end of the temporal series revealed net increase inTD,FD, andPD, but changes inTDwere larger than those inFDandPD, suggesting increasing biotic homogenization of avian assemblages throughout the United States. Changes were greatest at high elevations and latitudes – consistent with purported effects of ongoing climate change on biodiversity. Our findings highlight the potential of combining new types of data with novel statistical models to enable a more integrative monitoring and assessment of the multiple facets of biodiversity.

     
    more » « less