skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Vitro Selection of an ATP-Binding TNA Aptamer
Recent advances in polymerase engineering have made it possible to isolate aptamers from libraries of synthetic genetic polymers (XNAs) with backbone structures that are distinct from those found in nature. However, nearly all of the XNA aptamers produced thus far have been generated against protein targets, raising significant questions about the ability of XNA aptamers to recognize small molecule targets. Here, we report the evolution of an ATP-binding aptamer composed entirely of α-L-threose nucleic acid (TNA). A chemically synthesized version of the best aptamer sequence shows high affinity to ATP and strong specificity against other naturally occurring ribonucleotide triphosphates. Unlike its DNA and RNA counterparts that are susceptible to nuclease digestion, the ATP-binding TNA aptamer exhibits high biological stability against hydrolytic enzymes that rapidly degrade DNA and RNA. Based on these findings, we suggest that TNA aptamers could find widespread use as molecular recognition elements in diagnostic and therapeutic applications that require high biological stability.  more » « less
Award ID(s):
1946312
PAR ID:
10197802
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Molecules
Volume:
25
Issue:
18
ISSN:
1420-3049
Page Range / eLocation ID:
4194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Genetically encoded fluorescent protein and fluorogenic RNA sensors are indispensable tools for imaging biomolecules in cells. To expand the toolboxes and improve the generalizability and stability of this type of sensor, we report herein a genetically encoded fluorogenic DNA aptamer (GEFDA) sensor by linking a fluorogenic DNA aptamer for dimethylindole red with an ATP aptamer. The design enhances red fluorescence by 4-fold at 650 nm in the presence of ATP. Additionally, upon dimerization, it improves the signal-to-noise ratio by 2–3 folds. We further integrated the design into a plasmid to create a GEFDA sensor for sensing ATP in live bacterial and mammalian cells. This work expanded genetically encoded sensors by employing fluorogenic DNA aptamers, which offer enhanced stability over fluorogenic proteins and RNAs, providing a novel tool for real-time monitoring of an even broader range of small molecular metabolites in biological systems. 
    more » « less
  2. Abstract Nucleic acid aptamers selected for thrombin binding have been previously shown to possess anticoagulant activity; however, problems with rapid renal clearance and short circulation half‐life have prevented translation to clinical usefulness. Here, a family of self‐folding, functional RNA origami molecules bearing multiple thrombin‐binding RNA aptamers and showing significantly improved anticoagulant activity is described. These constructs may overcome earlier problems preventing clinical use of nucleic acid anticoagulants. RNA origami structures are designed in silico and produced by in vitro transcription from DNA templates. Incorporation of 2'‐fluoro‐modified C‐ and U‐nucleotides is shown to increase nuclease resistance and stability during long‐term storage. Specific binding to human thrombin as well as high stability in the presence of RNase A and in human plasma, comparatively more stable than DNA is demonstrated. The RNA origami constructs show anticoagulant activity sevenfold greater than free aptamer and higher than previous DNA weave tiles decorated with DNA aptamers. Anticoagulation activity is maintained after at least 3 months of storage in buffer at 4 °C. Additionally, inhibition of thrombin is shown to be reversed by addition of single‐stranded DNA antidotes. This project paves the way for development of RNA origami for potential therapeutic applications especially as a safer surgical anticoagulant. 
    more » « less
  3. Abstract Synthetic genetics is an area of synthetic biology that aims to extend the properties of heredity and evolution to artificial genetic polymers, commonly known as xeno‐nucleic acids or XNAs. In addition to establishing polymerases that are able to convert genetic information back and forth between DNA and XNA, efforts are underway to construct XNAs with expanded chemical functionality. α‐L‐Threose nucleic acid (TNA), a type of XNA that is recalcitrant to nuclease digestion and amenable to Darwinian evolution, provides a model system for developing XNAs with functional groups that are not present in natural DNA and RNA. Here, we describe the synthesis and polymerase activity of a cytidine TNA triphosphate analog (6‐phenyl‐pyrrolocytosine, tCpTP) that maintains Watson‐Crick base pairing with guanine. Polymerase‐mediated primer extension assays show that tCpTP is an efficient substrate for Kod‐RI, a DNA‐dependent TNA polymerase developed to explore the functional properties of TNA byin vitroselection. Fidelity studies reveal that a cycle of TNA synthesis and reverse transcription occurs with 99.9% overall fidelity when tCpTP and 7‐deaza‐tGTP are present as TNA substrates. This result expands the toolkit of TNA building blocks available forin vitroselection. 
    more » « less
  4. Fluorescent light-up aptamers (FLAPs) are well-performed biosensors for cellular imaging and the detection of different targets of interest, including RNA, non-nucleic acid molecules, metal ions, and so on. They could be easily designed and emit a strong fluorescence signal once bound to specified fluorogens. Recently, one unique aptamer called Mango-II has been discovered to possess a strong affinity and excellent fluorescent properties with fluorogens TO1-Biotin and TO3-Biotin. To explore the binding mechanisms, computational simulations have been performed to obtain structural and thermodynamic information about FLAPs at atomic resolution. AMOEBA polarizable force field, with the capability of handling the highly charged and flexible RNA system, was utilized for the simulation of Mango-II with TO1-Biotin and TO3-Biotin in this work. The calculated binding free energy using published crystal structures is in excellent agreement with the experimental values. Given the challenges in modeling complex RNA dynamics, our work demonstrates that MD simulation with a polarizable force field is valuable for understanding aptamer-fluorogen binding and potentially designing new aptamers or fluorogens with better performance. 
    more » « less
  5. Abstract Staphylococcus aureusis a major foodborne bacterial pathogen. Early detection ofS. aureusis crucial to prevent infections and ensure food quality. The iron‐regulated surface determinant protein A (IsdA) ofS. aureusis a unique surface protein necessary for sourcing vital iron from host cells for the survival and colonization of the bacteria. The function, structure, and location of the IsdA protein make it an important protein for biosensing applications relating to the pathogen. Here, we report an in‐silico approach to develop and validate high‐affinity binding aptamers for the IsdA protein detection using custom‐designed in‐silico tools and single‐molecule Fluorescence Resonance Energy Transfer (smFRET) measurements. We utilized in‐silico oligonucleotide screening methods and metadynamics‐based methods to generate 10 aptamer candidates and characterized them based on the Dissociation Free Energy (DFE) of the IsdA‐aptamer complexes. Three of the aptamer candidates were shortlisted for smFRET experimental analysis of binding properties. Limits of detection in the low picomolar range were observed for the aptamers, and the results correlated well with the DFE calculations, indicating the potential of the in‐silico approach to support aptamer discovery. This study showcases a computational SELEX method in combination with single‐molecule binding studies deciphering effective aptamers againstS. aureus IsdA, protein. The established approach demonstrates the ability to expedite aptamer discovery that has the potential to cut costs and predict binding efficacy. The application can be extended to designing aptamers for various protein targets, enhancing molecular recognition, and facilitating the development of high‐affinity aptamers for multiple uses. 
    more » « less