skip to main content


Title: Self‐Propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets
Abstract

Advanced synthetic materials are needed to produce nano‐ and mesoscale structures that function autonomously, catalyze reactions, and convert chemical energy into motion. This paper describes supracolloidal fiber‐like structures that are composed of self‐adhering, or “sticky,” oil‐in‐water emulsion droplets. Polymer zwitterion surfactants serve as the key interfacial components of these materials, enabling multiple functions simultaneously, including acting as droplet‐stabilizing surfactants, interdroplet adhesives, and building blocks of the fibers. This fiber motion, a surprising additional feature of these supracolloidal structures, is observed at the air–water interface and hinged on the chemistry of the polymer surfactant. The origin of this motion is hypothesized to involve transport of polymer from the oil–water interface to the air–water interface, which generates a Marangoni (interfacial) stress. Harnessing this fiber motion with functional polymer surfactants, and selection of the oil phase, produced worm‐like objects capable of rotation, oscillation, and/or response to external fields. Overall, these supracolloidal fibers fill a design gap between self‐propelled nano/microscale particles and macroscale motors, and have the potential to serve as new components of soft, responsive materials structures.

 
more » « less
Award ID(s):
1740630
NSF-PAR ID:
10457028
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
41
Issue:
15
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The construction of functional nano-/micro-architectures through self-assembly and self-organization of organic molecules and polymeric materials plays an important role in the development of many technologies. In this study, we report the spontaneous formation of uniform polymer microrods with lengths of up to a few tens of micrometers from paraffin wax. Through a solvent attrition approach, colloidal structures of paraffin wax are introduced into water. After the initial growth stage, the microrods undergo morphological transformation and end-to-end aggregation, processes likely driven by thermodynamics to create equilibrium structures with minimal interfacial energies. The polymer microrods can effectively absorb hydrophobic nanoparticles, indicating their potential to serve as host materials for functional components. The formation of polymer microrods from paraffin wax and their spontaneous growth mechanism discovered in this study may provide new insights to the self-assembly of microstructures. 
    more » « less
  2. Abstract

    Biologically extracted cellulose nanocrystals (CNCs) are rod-like and amphiphilic materials with surface-exposed (hydrophilic sites) and hidden (hydrophobic sites) hydroxyl groups. These physicochemical characteristics make CNCs suitable for use as emulsifying agents to stabilize emulsions. Stable oil-in-water emulsions, using sulfated (i.e., –$${{\text{SO}}}_{3}^{-}$$SO3-) CNCs that were ionically crosslinked with alkaline-earth (i.e.,$${{\text{Mg}}}^{2+}$$Mg2+) or transition-d-block (i.e.,$${{\text{Zn}}}^{2+}$$Zn2+) metal cations, were developed without the use of any synthetic surfactants or prior functionalization of pure CNCs with hydrophobic molecules. Various emulsion surface properties such as interfacial tension, surface charge, surface chemistry, as well as rheology were characterized. Ionically crosslinked CNCs (iCNCs) adsorbed at the interface of an oil and water and fortified the emulsion droplets (5–30 µm) against coalescence by lowering the interfacial tension from 65 mN/m (i.e., pure CNC mixture with oil) to 25 mN/m (i.e., iCNC mixture with oil) and reducing zeta potential with surface charge values (–30 mV to –10 mV), ideal to maintain droplet layer assembly at the water–oil interface. This study provided an alternative approach to achieve particle-stabilized and surfactant-free emulsions by using divalent metal nitrates to develop “clean” emulsion-based technologies for applications in many industries from agriculture to food to pharmaceuticals.

     
    more » « less
  3. Associative surfactants systems involving polar oils have recently been shown to stabilize immiscible liquids by forming nanostructures at the liquid interface and have been used to print soft materials. Although these associating surfactant systems show great promise for creating nanostructured soft materials, a fundamental understanding of the self-assembly process is still unknown. In this study, a ternary phase diagram for a system of cationic surfactant cetylpyridinium chloride monohydrate (CPCl), a polar oil (oleic acid), and water is established using experiment and simulation, to study the equilibrium phase behavior. A combination of visual inspection, small-angle X-ray scattering (SAXS), and rheological measurements was employed to establish the phase behavior and properties of the self-assembled materials. Dissipative particle dynamics (DPD) is used to simulate the formation of the morphologies in this system and support the experimental results. The ternary phase diagram obtained from the simulations agrees with the experimental results, indicating the robustness of the computational simulation as a supplement to the mesoscale experimental systems. We observe that morphological transitions ( e.g. , micelle-to-bilayer and vesicle-to-lamellar) are in agreement between experiments and simulations across the ternary diagram. DPD simulations correctly predict that associative surfactant systems form new nanoscale phases due to the co-assembly of the components. The established ternary phase diagram and the DPD model pave the way towards predicting and controlling the formation of different mesostructures like lamellar or vesicles, opening new avenues to tailor and synthesize desired morphologies for applications related to liquid-in-liquid 3D printing. 
    more » « less
  4. Abstract

    Metal-organic frameworks (MOF) are an emerging class of microporous materials with promising applications. MOF nanocrystals, and their assembled super-structures, can display unique properties and reactivities when compared with their bulk analogues. MOF nanostructures of 0-D, 2-D, and 3-D dimensions can be routinely obtained by controlling reaction conditions and ligand additives, while formation of 1-D MOF nanocrystals (nanowires and nanorods) and super-structures has been relatively rare. We report here a facile templated interfacial synthesis methodology for the preparation of a series of 1-D MOF nano- and micro-structures with precisely controlled shapes and sizes. Specifically, by applying track-etched polycarbonate (PCTE) membranes as the templates and at the oil/water interface, we rapidly and reproducibly synthesize zeolitic imidazolate framework-8 (ZIF-8) and ZIF-67 nano- and micro structures of sizes ranging from 10 nm to 20 μm. We also identify a size confinement effect on MOF crystal growth, which leads to single crystals under the most restricted conditions and inter-grown polycrystals at larger template pore sizes, as well as surface directing effects that influence the crystallographic preferred orientation. Our findings provide a potentially generalizable method for controlling the size, morphology, and crystal orientations of MOF nanomaterials, as well as offering fundamental understanding into MOF crystal growth mechanisms.

     
    more » « less
  5. Abstract

    The in‐plane packing of gold (Au), polystyrene (PS), and silica (SiO2) spherical nanoparticle (NP) mixtures at a water–oil interface is investigated in situ by UV–vis reflection spectroscopy. All NPs are functionalized with carboxylic acid such that they strongly interact with amine‐functionalized ligands dissolved in an immiscible oil phase at the fluid interface. This interaction markedly increases the binding energy of these nanoparticle surfactants (NPSs). The separation distance between the Au NPSs and Au surface coverage are measured by the maximum plasmonic wavelength (λmax) and integrated intensities as the assemblies saturate for different concentrations of non‐plasmonic (PS/SiO2) NPs. As the PS/SiO2content increases, the time to reach intimate Au NP contact also increases, resulting from their hindered mobility. λmaxchanges within the first few minutes of adsorption due to weak attractive inter‐NP forces. Additionally, a sharper peak in the reflection spectrum at NP saturation reveals tighter Au NP packing for assemblies with intermediate non‐plasmonic NP content. Grazing incidence small angle X‐ray scattering (GISAXS) and scanning electron microscopy (SEM) measurements confirm a decrease in Au NP domain size for mixtures with larger non‐plasmonic NP content. The results demonstrate a simple means to probe interfacial phase separation behavior using in situ spectroscopy as interfacial structures densify into jammed, phase‐separated NP films.

     
    more » « less