Workshops hosted at recent Biomedical Engineering Society (BMES) meetings have identified the leap from university to a career in industry to be a nation-wide challenge for Biomedical Engineering (BME) undergraduate programs and their alumni. While some strides are being made to better utilize industry feedback to steer the future of BME curricula, a more holistic understanding of the factors influencing engineering students’ career outcomes is desired. Here, we present an exploratory study analyzing the relationship between the factor of diversity (gender, ethnicity) and undergraduate engineering students’ workforce opportunities (co-op, internship, and full-time employment offers, starting salaries). Using data collected by our university’s Engineering Career Services, we will present gender and ethnicity-based analyses of workforce opportunities and career outcomes for BME students, compared to three other undergraduate engineering majors at our university. As often typical with other BME programs, the BME major at our university has the highest percentage of female and under-represented minority students (31.7% and 15.0%, respectively), compared to our college of engineering as a whole (22.5% and 6.5%, respectively). Identifying potential diversity- and major-based inequities could provide further insight for how to improve retention and maintain appropriate pathways into the engineering workforce.
more »
« less
Comparison of Job Market and Employer Interest in Undergraduate Engineering Students: An Exploratory Analysis
There is little empirical research that provides a broad understanding of graduates’ interests in industry and engineering job opportunities. This study aimed to analyze differences in industry participation between engineering majors, undergraduate engineering student participation in job fair events, and student hiring recruitment trends.A quantitative approach was used to address: RQ 1: How are the industry work opportunities different between different engineering majors at a large Midwest institution?; and RQ 2: How do job fair participants and hiring in engineering industry differ for BME students from other engineering majors at a large Midwest institution? The Ohio State University Department of Biomedical Engineering has observed lower hiring trends for undergraduate biomedical engineering students pursuing industry relative to other engineering majors. In this study, the number of companies interested in a major was different between majors. This makes it clear that companies present in each job fair have a higher preference for some major over others. Understanding if that difference is more prevalent of pre-major students or a different effect would require further study. Undergraduate student hiring was observed to be different between majors, but this has been previously reported (Nocera et al. 2018, Ortiz-Rosario et al. 2019). This study also found that recruitment-attendance ratios, a rough metric of yield, were significantly different between engineering majors. With better recruitment data, these ratios could indicate differences in the effectiveness of job fairs for different engineering majors. Future work will continue to search for factors that explain why there is a gap in BME industry hiring, and on ways to bridge that gap.
more »
« less
- Award ID(s):
- 1830814
- PAR ID:
- 10197867
- Date Published:
- Journal Name:
- ASEE annual conference
- ISSN:
- 0190-1052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Doctoral students experience high rates of mental health distress and dropout; however, the mental health and wellness of engineering doctoral students is understudied. Studies of student persistence, wellness, and success often aggregate fields together, such as by studying all engineering students. Thus, little work has considered the experiences of biomedical engineering (BME) doctoral students, despite differences between doctoral BME research, course content, and career expectations compared with other engineering disciplines. In this qualitative interview case study, we explore stressors present in the BME graduate experience that are unique from engineering students in other disciplines. Methods We analyzed a longitudinal interview study of doctoral engineering students across four timepoints within a single academic year, consisting of a subsample (n=6) of doctoral students in a BME discipline, among a larger sample of engineering doctoral students (N=55). BME students in the sample experienced some themes generated from a larger thematic analysis differently compared with other engineering disciplines. These differences are presented and discussed, grounded in a model of workplace stress. Results BME participants working in labs with biological samples expressed a lack of control over the timing and availability of materials for their research projects. BME participants also had more industry-focused career plans and described more commonly coming to BME graduate studies from other fields (e.g., another engineering major) and struggling with the scope and content of their introductory coursework. A common throughline for the stressors was the impact of the interdisciplinary nature of BME programs, to a greater extent compared with other engineering student experiences in our sample. Conclusions We motivate changes for researchers, instructors, and policymakers which specifically target BME students and emphasize the importance of considering studies at various unit levels (university department level vs college level vs full institution) when considering interventions targeting student stress and wellness.more » « less
-
null (Ed.)This study investigates career intentions and students’ engineering attitudes in BME, with a focus on gender differences. Data from n = 716 undergraduate biomedical engineering students at a large public research institution in the United States were analyzed using hierarchical agglomerative cluster analysis. Results revealed five clusters of intended post-graduation plans: Engineering Job and Graduate School, Any Job, Non-Engineering Job and Graduate School, Any Option, and Any Graduate School. Women were evenly distributed across clusters; there was no evidence of gendered career preferences. The main findings in regard to engineering attitudes reveal significant differences by cluster in interest, attainment value, utility value, and professional identity, but not in academic self-efficacy. Yet, within clusters the only gender differences were women’s lower engineering academic self-efficacy, interest and professional identity compared to men. Implications and areas of future research are discussed.more » « less
-
Although there are numerous evidence-based benefits to undergraduate research for new-majority students (students who are from traditionally underrepresented ethnicities, first-generation college students, students from lower-income families, or transfer students) (Hurtado, S. et al., 2011; Kinzie et al., 2008a; Lopatto, 2007), they are less likely to participate or stay in mentored research experiences (Finley & McNair, 2013; Haeger et al., 2015). In order to determine not only who has access to undergraduate research, but to also identify what barriers to full-inclusion exist for new-majority students, we conducted a mixed methods study at a public, Hispanic Serving Institution. We analyzed institutional data to explore who participates in research and who does not. We also specifically sampled a group of students who expressed an interest in research experiences but who never actually participated for our student survey (N=96). Additionally, we conducted five focus groups with students, staff, and faculty (N~30). We found positive results in the analysis of patterns of participation and found no significant or substantial differences between students who did or did not participate in undergraduate research in terms of race/ethnicity, gender, or first-generation status. The undergraduate researcher population did have significantly more STEM majors and Pell grant recipients. The qualitative analysis identified barriers to participation in research in the following areas: access to research opportunities, programmatic structures, research culture and norms, and campus climate. We present these findings along with descriptions of initiatives that have been successful in diversifying research participation and strategies to create more inclusive research environments.more » « less
-
Abstract In response to the growing computational intensity of the healthcare industry, biomedical engineering (BME) undergraduate education is placing increased emphasis on computation. The presence of substantial gender disparities in many computationally intensive disciplines suggests that the adoption of computational instruction approaches that lack intentionality may exacerbate gender disparities. Educational research suggests that the development of an engineering and computational identity is one factor that can support students’ decisions to enter and persist in an engineering major. Discipline-based identity research is used as a lens to understand retention and persistence of students in engineering. Our specific purpose is to apply discipline-based identity research to define and explore the computational identities of undergraduate engineering students who engage in computational environments. This work will inform future studies regarding retention and persistence of students who engage in computational courses. Twenty-eight undergraduate engineering students (20 women, 8 men) from three engineering majors (biomedical engineering, agricultural engineering, and biological engineering) participated in semi-structured interviews. The students discussed their experiences in a computationally-intensive thermodynamics course offered jointly by the Biomedical Engineering and Agricultural & Biological Engineering departments. The transcribed interviews were analyzed through thematic coding. The gender stereotypes associated with computer programming also come part and parcel with computer programming, possibly threatening a student's sense of belonging in engineering. The majority of the participants reported that their computational identity was “in the making.” Students’ responses also suggested that their engineering identity and their computational identity were in congruence, while some incongruence is found between their engineering identity and a creative identity as well as between computational identity and perceived feminine norms. Responses also indicate that students associate specific skills with having a computational identity. This study's findings present an emergent thematic definition of a computational person constructed from student perceptions and experiences. Instructors can support students’ nascent computational identities through intentional mitigation of the gender stereotypes and biases, and by framing assignments to focus on developing specific skills associated with the computational modeling processes.more » « less
An official website of the United States government

