skip to main content


Title: Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
Abstract

Origami, the ancient Japanese art of paper folding, is not only an inspiring technique to create sophisticated shapes, but also a surprisingly powerful method to induce nonlinear mechanical properties. Over the last decade, advances in crease design, mechanics modeling, and scalable fabrication have fostered the rapid emergence of architected origami materials. These materials typically consist of folded origami sheets or modules with intricate 3D geometries, and feature many unique and desirable material properties like auxetics, tunable nonlinear stiffness, multistability, and impact absorption. Rich designs in origami offer great freedom to design the performance of such origami materials, and folding offers a unique opportunity to efficiently fabricate these materials at vastly different sizes. Here, recent studies on the different aspects of origami materials—geometric design, mechanics analysis, achieved properties, and fabrication techniques—are highlighted and the challenges ahead discussed. The synergies between these different aspects will continue to mature and flourish this promising field.

 
more » « less
Award ID(s):
1751449 1760943 1633952
NSF-PAR ID:
10462509
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
5
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Origami — the ancient art of paper folding — has been widely adopted as a design and fabrication framework for many engineering applications, including multi-functional structures, deployable spacecraft, and architected materials. These applications typically involve complex and dynamic deformations in the origami facets, necessitating high-fidelity models to better simulate folding-induced mechanics and dynamics. This paper presents the formulation and validation of such a new model based on the Absolute Nodal Coordinate Formulation (ANCF), which exploits the tessellated nature of origami and describes it as an assembly of flexible panels rotating around springy creases. To estimate the crease folding, we mathematically formulate a “torsional spring connector” in the framework of ANCF and apply it to the crease nodes, where the facets meshed by ANCF plate elements are interconnected. We simulate the dynamic folding of a Miura-ori unit cell and compare the results with commercial finite element software (ABAQUS) to validate the modeling accuracy. The ANCF model can converge using significantly fewer elements than ABAQUS without sacrificing accuracy. Therefore, this high-fidelity model can help deepen our knowledge of folding-induced mechanics and dynamics, broadening the appeals of origami in science and engineering. 
    more » « less
  2. Origami-inspired structures and material systems have been used in many engineering applications because of their unique kinematic and mechanical properties induced by folding. However, accurately modeling and analyzing origami folding and the associated mechanical properties are challenging, especially when large deformation and dynamic responses need to be considered. In this paper, we formulate a high-fidelity model — based on the iso-parametric Absolute Nodal Coordinate Formulation (ANCF) — for simulating the dynamic folding behaviors of origami involving large deformation. The centerpiece of this new model is the characterization of crease deformation. To this end, we model the crease using rotational spring at the nodes. The corresponding folding angle is calculated based on the local surface normal vectors. Compared to the currently popular analytical methods for analyzing origami, such as the rigid-facet and equivalent bar-hinge approach, this new model is more accurate in that it can describe the large crease and facet deformation without imposing many assumptions. Meanwhile, the ANCF based origami model can be more efficient computationally compared to the traditional finite element simulations. Therefore, this new model can lay down the foundation for high-fidelity origami analysis and design that involves mechanics and dynamics. 
    more » « less
  3. Abstract

    Mechanical metamaterials are architected manmade materials that allow for unique behaviors not observed in nature, making them promising candidates for a wide range of applications. Existing metamaterials lack tunability as their properties can only be changed to a limited extent after the fabrication. Herein, a new magneto‐mechanical metamaterial is presented that allows great tunability through a novel concept of deformation mode branching. The architecture of this new metamaterial employs an asymmetric joint design using hard‐magnetic soft active materials that permits two distinct actuation modes (bending and folding) under opposite‐direction magnetic fields. The subsequent application of mechanical compression leads to the deformation mode branching where the metamaterial architecture transforms into two distinctly different shapes, which exhibit very different deformations and enable great tunability in properties such as mechanical stiffness and acoustic bandgaps. Furthermore, this metamaterial design can be incorporated with magnetic shape memory polymers with global stiffness tunability, which also allows for the global shift of the acoustic behaviors. The combination of magnetic and mechanical actuations, as well as shape memory effects, impart wide tunable properties to a new paradigm of metamaterials.

     
    more » « less
  4. This work presents a unique approach to the design, fabrication, and characterization of paper-based origami robotic systems consisting of stackable pneumatic actuators. These paper-based actuators (PBAs) use materials with high elastic modulus-to-mass ratios, accordion-like structures, and direct coupling with pneumatic pressure for extension and bending. The study contributes to the scientific and engineering understanding of foldable components under applied pneumatic pressure by constructing stretchable and flexible structures with intrinsically nonstretchable materials. Experiments showed that a PBA possesses a power-to-mass ratio greater than 80 W/kg, which is more than four times that of human muscle. This work also illustrates the stackability and functionality of PBAs by two prototypes: a parallel manipulator and a legged locomotor. The manipulator consisting of an array of PBAs can bend in a specific direction with the corresponding actuator inflated. In addition, the stacked actuators in the manipulator can rotate in opposite directions to compensate for relative rotation at the ends of each actuator to work in parallel and manipulate the platform. The locomotor rotates the PBAs to apply and release contact between the feet and the ground. Furthermore, a numerical model developed in this work predicts the mechanical performance of these inflatable actuators as a function of dimensional specifications and folding patterns. Overall, we use stacked origami actuators to implement functionalities of manipulation, gripping, and locomotion as conventional robotic systems. Future origami robots made of paper-like materials may be suitable for single use in contaminated or unstructured environments or low-cost educational materials. 
    more » « less
  5. Origami-inspired mechanical metamaterials could exhibit extraordinary properties that originate almost exclusively from the intrinsic geometry of the constituent folds. While most of current state of the art efforts have focused on the origami’s static and quasi-static scenarios, this research explores the dynamic characteristics of degree-4 vertex (4-vertex) origami folding. Here we characterize the mechanics and dynamics of two 4-vertex origami structures, one is a stacked Miura-ori (SMO) structure with structural bistability, and the other is a stacked single-collinear origami (SSCO) structure with lockinginduced stiffness jump; they are the constituent units of the corresponding origami metamaterials. In this research, we theoretically model and numerically analyze their dynamic responses under harmonic base excitations. For the SMO structure, we use a third-order polynomial to approximate the bistable stiffness profile, and numerical simulations reveal rich phenomena including small-amplitude intrawell, largeamplitude interwell, and chaotic oscillations. Spectrum analyses reveal that the quadratic and cubic nonlinearities dominate the intrawell oscillations and interwell oscillations, respectively. For the SSCO structure, we use a piecewise constant function to describe the stiffness jump, which gives rise to a frequencyamplitude response with hardening nonlinearity characteristics. Mainly two types of oscillations are observed, one with small amplitude that coincides with the linear scenario because locking is not triggered, and the other with large amplitude and significant nonlinear characteristics. The method of averaging is adopted to analytically predict the piecewise stiffness dynamics. Overall, this research bridges the gap between the origami quasi-static mechanics and origami folding dynamics, and paves the way for further dynamic applications of origami-based structures and metamaterials. 
    more » « less