Optical upconversion (UC) of low energy photons into high energy photons enables solar cells to harvest photons with energies below the band gap of the absorber, reducing the transmission loss. UC based on triplet–triplet annihilation (TTA) in organic chromophores can upconvert photons from sunlight, albeit with low conversion efficiency. We utilize three energy-based criteria to assess the UC potential of TTA emitters in terms of the quantum yield (QY) and the anti-Stokes shift. The energy loss in the singlet pathway of an emitter encounter complex, where a high energy photon is emitted, determines whether a chromophore may undergo TTA. The energy loss in the triplet pathway, which is the main competing process, impacts the TTA QY. The energy difference between the lowest singlet and triplet excitation states in TTA emitters sets an upper bound for the anti-Stokes shift of TTA-UC. Using the energetic criteria evaluated by time-dependent density functional theory (TDDFT) calculations, we find that benzo[ a ]tetracene, benzo[ a ]pyrene, and their derivatives are promising TTA emitters. The energetics assessment and computer simulations could be used to efficiently discover and design more candidate high-performance TTA emitters.
more »
« less
An energetics perspective on why there are so few triplet–triplet annihilation emitters
The efficiency of solar cells may be increased by utilizing photons with energies below the band gap of the absorber. This may be enabled by upconversion of low energy photons into high energy photons via triplet–triplet annihilation (TTA) in organic chromophores. The quantum yield of TTA is often low due to competing processes. The singlet pathway, where a high energy photon is emitted, is one of three possible outcomes of an encounter between two triplet excitons. The quintet pathway is often too high in energy to be accessible, leaving the triplet pathway as the main competing process. Using many-body perturbation theory in the GW approximation and the Bethe–Salpeter equation, we calculate the energy release in both the singlet and triplet pathways for 59 chromophores of different chemical families. We find that in most cases the triplet pathway is open and has a larger energy release than the singlet pathway. Thus, the energetics perspective explains why there are so few TTA emitters and why the quantum yield of TTA is typically low. That said, our results also indicate that the performance of emitters from known chemical families may be improved by chemical modifications, such as functionalization with side groups, and that new chemical families could be explored to discover more TTA emitters.
more »
« less
- Award ID(s):
- 1844484
- PAR ID:
- 10198080
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 8
- Issue:
- 31
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 10816 to 10824
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Triplet–triplet annihilation (TTA) enables photon upconversion by combining two lower-energy triplet excitons to produce a higher-energy singlet exciton. This mechanism enhances light-harvesting efficiency for solar energy conversion and enables the use of lower-energy photons in bioimaging and photoredox catalysis applications. The magnetic modulation of such high-energy excitons presents an exciting opportunity to develop molecular quantum information technologies. While the spin dynamics of triplet exciton pairs are sensitive to external magnetic fields, the magnetic field effects (MFEs) associated with these pairs are generally limited by spin statistics to at most 10% at low fields (<1 T), making them challenging to apply in technological advancements. In contrast, MFEs on spin-correlated radical pairs (SCRPs) can be significantly greater, surpassing those on triplet pairs. By using SCRPs-based molecular qubits as triplet sensitizers in the sensitized TTA scheme, we can magnetically modulate TTA and consequently, the delayed fluorescence of annihilators. In our current system, we have achieved more than 70% magnetic modulation of delayed fluorescence, effectively harnessing and even amplifying magnetic modulation within SCRPs to influence high-energy excitons. This work opens new opportunities for advancing spin-controlled chemical reactions and molecular quantum information technologies.more » « less
-
Abstract High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle‐reinforced composite networks since deep light penetration of short‐wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet–triplet annihilation upconversion (TTA‐UC) is employed for curing opaque hydrogel composites created by direct‐ink‐write (DIW) 3D printing. TTA‐UC converts low energy red light (λmax = 660 nm) for deep penetration into higher‐energy blue light to initiate free radical polymerizations within opaque objects. As proof‐of‐principle, hydrogels containing up to 15 wt.% TiO2filler particles and doped with TTA‐UC chromophores are readily cured with red light, while composites without the chromophores and TiO2loadings as little as 1–2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D‐printed composite polymer networks.more » « less
-
Abstract Triplet‐triplet annihilation upconversion (TTA‐UC) is a photophysical process in which two low‐energy photons are converted into one higher‐energy photon. This type of upconversion requires two species: a sensitizer that absorbs low‐energy light and transfers its energy to an annihilator, which emits higher‐energy light after TTA. In spite of the multitude of applications of TTA‐UC, few families of annihilators have been explored. In this work, we show dipyrrolonaphthyridinediones (DPNDs) can act as annihilators in TTA‐UC. We found that structural changes to DPND dramatically increase its upconversion quantum yield (UCQY). Our optimized DPND annihilator demonstrates a high maximum internal UCQY of 9.4 %, outperforming the UCQY of commonly used near‐infrared‐to‐visible annihilator rubrene by almost double.more » « less
-
null (Ed.)The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet–triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn–Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T 0 ), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.more » « less
An official website of the United States government

