skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The cytokine MIF controls daily rhythms of symbiont nutrition in an animal–bacterial association
The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis betweenEuprymna scolopesandVibrio fischeri. As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population ofV. fischericells resides. Nocturnal migration of these macrophage-like cells, together with identification of anE. scolopesMIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.  more » « less
Award ID(s):
1828262
PAR ID:
10198203
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
44
ISSN:
0027-8424
Page Range / eLocation ID:
p. 27578-27586
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Microbes live in complex microniches within host tissues, but how symbiotic partners communicate to create such niches during development remains largely unexplored. Using confocal microscopy and symbiont genetics, we characterized the shaping of host microenvironments during light organ colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri . During embryogenesis, three pairs of invaginations form sequentially on the organ’s surface, producing pores that lead to interior compressed tubules at different stages of development. After hatching, these areas expand, allowing V. fischeri cells to enter and migrate ∼120 μm through three anatomically distinct regions before reaching blind-ended crypt spaces. A dynamic gatekeeper, or bottleneck, connects these crypts with the migration path. Once V. fischeri cells have entered the crypts, the bottlenecks narrow, and colonization by the symbiont population becomes spatially restricted. The actual timing of constriction and restriction varies with crypt maturity and with different V. fischeri strains. Subsequently, starting with the first dawn following colonization, the bottleneck controls a lifelong cycle of dawn-triggered expulsions of most of the symbionts into the environment and a subsequent regrowth in the crypts. Unlike other developmental phenotypes, bottleneck constriction is not induced by known microbe-associated molecular patterns (MAMPs) or by V. fischeri - produced bioluminescence, but it does require metabolically active symbionts. Further, while symbionts in the most mature crypts have a higher proportion of live cells and a greater likelihood of expulsion at dawn, they have a lower resistance to antibiotics. The overall dynamics of these distinct microenvironments reflect the complexity of the host-symbiont dialogue. IMPORTANCE The complexity, inaccessibility, and time scales of initial colonization of most animal microbiomes present challenges for the characterization of how the bacterial symbionts influence the form and function of tissues in the minutes to hours following the initial interaction of the partners. Here, we use the naturally occurring binary squid-vibrio association to explore this phenomenon. Imaging of the spatiotemporal landscape of this symbiosis during its onset provides a window into the impact of differences in both host-tissue maturation and symbiont strain phenotypes on the establishment of a dynamically stable symbiotic system. These data provide evidence that the symbionts shape the host-tissue landscape and that tissue maturation impacts the influence of strain-level differences on the daily rhythms of the symbiosis, the competitiveness for colonization, and antibiotic sensitivity. 
    more » « less
  2. Rudi, Knut (Ed.)
    ABSTRACT Functional studies of host-microbe interactions benefit from natural model systems that enable the exploration of molecular mechanisms at the host-microbe interface. BioluminescentVibrio fischericolonize the light organ of the Hawaiian bobtail squid,Euprymna scolopes, and this binary model has enabled advances in understanding host-microbe communication, colonization specificity,in vivobiofilms, intraspecific competition, and quorum sensing. The hummingbird bobtail squid,Euprymna berryi,can be generationally bred and maintained in lab settings and has had multiple genes deleted by CRISPR approaches. The prospect of expanding the utility of the light organ model system by producing multigenerational host lines led us to determine the extent to which theE. berryilight organ symbiosis parallels known processes inE. scolopes. However, the nature of theE. berryilight organ, including its microbial constituency and specificity for microbial partners, has not been examined. In this report, we isolated bacteria fromE. berryianimals and tank water. Assays of bacterial behaviors required in the host, as well as host responses to bacterial colonization, illustrate largely parallel phenotypes inE. berryiandE. scolopeshatchlings. This study revealsE. berryito be a valuable comparative model to complement studies inE. scolopes.IMPORTANCEMicrobiome studies have been substantially advanced by model systems that enable functional interrogation of the roles of the partners and the molecular communication between those partners. TheEuprymna scolopes-Vibrio fischerisystem has contributed foundational knowledge, revealing key roles for bacterial quorum sensing broadly and in animal hosts, for bacteria in stimulating animal development, for bacterial motility in accessing host sites, and forin vivobiofilm formation in development and specificity of an animal’s microbiome.Euprymna berryiis a second bobtail squid host, and one that has recently been shown to be robust to laboratory husbandry and amenable to gene knockout. This study identifiesE. berryias a strong symbiosis model host due to features that are conserved with those ofE. scolopes, which will enable the extension of functional studies in bobtail squid symbioses. 
    more » « less
  3. Teixeira, Luis (Ed.)
    The regulatory noncoding small RNAs (sRNAs) of bacteria are key elements influencing gene expression; however, there has been little evidence that beneficial bacteria use these molecules to communicate with their animal hosts. We report here that the bacterial sRNA SsrA plays an essential role in the light-organ symbiosis between Vibrio fischeri and the squid Euprymna scolopes . The symbionts load SsrA into outer membrane vesicles, which are transported specifically into the epithelial cells surrounding the symbiont population in the light organ. Although an SsrA-deletion mutant (Δ ssrA ) colonized the host to a normal level after 24 h, it produced only 2/10 the luminescence per bacterium, and its persistence began to decline by 48 h. The host’s response to colonization by the Δ ssrA strain was also abnormal: the epithelial cells underwent premature swelling, and host robustness was reduced. Most notably, when colonized by the Δ ssrA strain, the light organ differentially up-regulated 10 genes, including several encoding heightened immune-function or antimicrobial activities. This study reveals the potential for a bacterial symbiont’s sRNAs not only to control its own activities but also to trigger critical responses promoting homeostasis in its host. In the absence of this communication, there are dramatic fitness consequences for both partners. 
    more » « less
  4. Abstract In mammals, T-cell migration is under circadian control, likely to anticipate daily rhythms in infection risk. Glucocorticoids are a major controller of circadian processes and malnutrition is associated with increased glucocorticoid secretion. Previous studies suggest malnutrition may impart a “super-quiescent” phenotype to T-cells, enabling a greater number of naïve T-cells to survive short-term malnutrition albeit with diminished function. Thus, we hypothesize that malnourished T-cells may conserve energy by disengaging from rhythmic migration under circadian control and/or foregoing migration to reside in the bone marrow instead. To test this hypothesis, the total number of nucleated cells and naïve CD4+ and CD8+ T-cells in the blood, spleen, bone marrow, and brachial and mesenteric lymph nodes were enumerated by flow cytometry every four hours over the course of one day from control and malnourished mice. Additionally, expression levels of CD127 and CXCR4 in both T-cell populations and the concentration of glucocorticoids in the blood were assessed. A better understanding of how malnutrition affects the circadian rhythm of T-cell migration will not only help identify the mechanisms of how circadian rhythms work, but also how organisms’ circadian rhythms change in response to malnutrition. This knowledge of how malnutrition disrupts the circadian rhythm of T-cells may help improve vaccination strategies in malnourished children. Supported by NSF-MRI [DBI- 1920116] NSF -RUI [IOS-1951881] 
    more » « less
  5. The estrous cycle regulates rhythms of locomotor activity, body temperature, and circadian gene expression. In female mice, activity increases on the night of proestrus, when elevated estrogens cause ovulation. Exogenous estradiol regulates eating behavior rhythms in female mice fed a high-fat diet, but it is unknown whether endogenous estrogens regulate eating rhythms. In this study, we investigated whether diurnal and circadian eating behavior rhythms change systematically across the estrous cycle. We first studied diurnal eating behavior rhythms in female C57BL/6J mice in 12L:12D. Estrous cycle stages were determined by vaginal cytology while eating behavior and wheel revolutions were continuously measured. The mice had regular 4- to 5-day estrous cycles. Consistent with prior studies, the greatest number of wheel revolutions occurred on the night of proestrus into estrus when systemic levels of estrogens peak. The amplitude, or robustness, of the eating behavior rhythm also fluctuated with 4- to 5-day cycles and peaked primarily during proestrus or estrus. The phases of eating behavior rhythms fluctuated, but not at 4- or 5-day intervals, and phases did not correlate with estrous cycle stages. After ovariectomy, the eating behavior rhythm amplitude fluctuated at irregular intervals. In constant darkness, the amplitude of the circadian eating behavior rhythm peaked every 4 or 5 days and coincided with the circadian day that had the greatest number of wheel revolutions, a marker of proestrus. These data suggest that fluctuations of ovarian hormones across the estrous cycle temporally organize the robustness of circadian eating behavior rhythms so that it peaks during ovulation and sexual receptivity. 
    more » « less