skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Creation and application of virtual patient cohorts of heart models
Patient-specific cardiac models are now being used to guide therapies. The increased use of patient-specific cardiac simulations in clinical care will give rise to the development of virtual cohorts of cardiac models. These cohorts will allow cardiac simulations to capture and quantify inter-patient variability. However, the development of virtual cohorts of cardiac models will require the transformation of cardiac modelling from small numbers of bespoke models to robust and rapid workflows that can create large numbers of models. In this review, we describe the state of the art in virtual cohorts of cardiac models, the process of creating virtual cohorts of cardiac models, and how to generate the individual cohort member models, followed by a discussion of the potential and future applications of virtual cohorts of cardiac models. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’.  more » « less
Award ID(s):
1762553 1762803
PAR ID:
10198329
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
378
Issue:
2173
ISSN:
1364-503X
Page Range / eLocation ID:
20190558
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cardiac Cine Magnetic Resonance (CMR) Imaging has made a significant paradigm shift in medical imaging technology, thanks to its capability of acquiring high spatial and temporal resolution images of different structures within the heart that can be used for reconstructing patient-specific ventricular computational models. In this work, we describe the development of dynamic patient-specific right ventricle (RV) models associated with normal subjects and abnormal RV patients to be subsequently used to assess RV function based on motion and kinematic analysis. We first constructed static RV models using segmentation masks of cardiac chambers generated from our accurate, memory-efficient deep neural architecture - CondenseUNet - featuring both a learned group structure and a regularized weight-pruner to estimate the motion of the right ventricle. In our study, we use a deep learning-based deformable network that takes 3D input volumes and outputs a motion field which is then used to generate isosurface meshes of the cardiac geometry at all cardiac frames by propagating the end-diastole (ED) isosurface mesh using the reconstructed motion field. The proposed model was trained and tested on the Automated Cardiac Diagnosis Challenge (ACDC) dataset featuring 150 cine cardiac MRI patient datasets. The isosurface meshes generated using the proposed pipeline were compared to those obtained using motion propagation via traditional non-rigid registration based on several performance metrics, including Dice score and mean absolute distance (MAD). 
    more » « less
  2. Faithful, accurate, and successful cardiac biomechanics and electrophysiological simulations require patient-specific geometric models of the heart. Since the cardiac geometry consists of highly-curved boundaries, the use of high-order meshes with curved elements would ensure that the various curves and features present in the cardiac geometry are well-captured and preserved in the corresponding mesh. Most other existing mesh generation techniques require computer-aided design files to represent the geometric boundary, which are often not available for biomedical applications. Unlike such methods, our technique takes a high-order surface mesh, generated from patient medical images, as input and generates a high-order volume mesh directly from the curved surface mesh. In this paper, we use our direct high-order curvilinear tetrahedral mesh generation method [1] to generate several second-order cardiac meshes. Our meshes include the left ventricle myocardia of a healthy heart and hearts with dilated and hypertrophic cardiomyopathy. We show that our high-order cardiac meshes do not contain inverted elements and are of sufficiently high quality for use in cardiac finite element simulations. 
    more » « less
  3. Abstract

    This paper explores cardiac electrophysiological simulations of the monodomain equations and introduces a novel subcycling time integration algorithm to exploit the structure of the ionic model. The aim of this work is to improve upon the efficiency of parallel cardiac monodomain simulations by using our subcycling algorithm in the computation of the ionic model to handle the local sharp changes of the solution. This will reduce the turnaround time for the simulation of basic cardiac electrical function on both idealized and patient‐specific geometry. Numerical experiments show that the proposed approach is accurate and also has close to linear parallel scalability on a computer with more than 1000 processor cores. Ultimately, the reduction in simulation time can be beneficial in clinical applications, where multiple simulations are often required to tune a model to match clinical measurements.

     
    more » « less
  4. Abstract

    Cardiac fibroblasts (CFs) are an attractive target for reducing pathological cardiac remodeling, and understanding the underlying mechanisms of these processes is the key to develop successful therapies for treating the pressure‐overloaded heart. CF‐specific knockout (KO) mouse lines with a Cre recombinase under the control of human TCF21 (hTCF21) promoter and/or an adeno‐associated virus serotype 9 (AAV9)‐hTCF21 system provide a powerful tool for understanding CF biology in vivo. Although a variety of rat disease models are vital for the research of cardiac fibrosis similar to mouse models, there are few rat models that employ cardiac cell‐specific conditional gene modification, which has hindered the development and translational relevance of cardiac disease models. In addition, to date, there are no reports of gene manipulation specifically in rat CFs in vivo. Here, we report a simplified CF‐specific rat transgenic model using an AAV9‐hTCF21 system that achieved a CF‐specific expression of transgene in adult rat hearts. Moreover, we successfully applied this approach to specifically manipulate mitochondrial morphology in quiescent CFs. In summary, this model will allow us to develop fast and simple rat CF‐specific transgenic models for studying cardiovascular diseases in vivo.

     
    more » « less
  5. Key points

    Induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs) capture patient‐specific genotype–phenotype relationships, as well as cell‐to‐cell variability of cardiac electrical activity

    Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes

    We have developed a whole‐cell model of iPSC‐CMs, composed of single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM outputs

    We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC‐CMs

    This framework links molecular mechanisms to cellular‐level outputs by revealing unique subsets of model parameters linked to known iPSC‐CM phenotypes

    Abstract

    There is a profound need to develop a strategy for predicting patient‐to‐patient vulnerability in the emergence of cardiac arrhythmia. A promisingin vitromethod to address patient‐specific proclivity to cardiac disease utilizes induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs). A major strength of this approach is that iPSC‐CMs contain donor genetic information and therefore capture patient‐specific genotype–phenotype relationships. A cited detriment of iPSC‐CMs is the cell‐to‐cell variability observed in electrical activity. We postulated, however, that cell‐to‐cell variability may constitute a strength when appropriately utilized in a computational framework to build cell populations that can be employed to identify phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have exploited variation in experimental data across multiple laboratories to develop a computational framework for investigating subcellular phenotypic mechanisms. We have developed a whole‐cell model of iPSC‐CMs composed of simple model components comprising ion channel models with single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM data for all major ionic currents. By optimizing ionic current model parameters to multiple experimental datasets, we incorporate experimentally‐observed variability in the ionic currents. The resulting population of cellular models predicts robust inter‐subject variability in iPSC‐CMs. This approach links molecular mechanisms to known cellular‐level iPSC‐CM phenotypes, as shown by comparing immature and mature subpopulations of models to analyse the contributing factors underlying each phenotype. In the future, the presented models can be readily expanded to include genetic mutations and pharmacological interventions for studying the mechanisms of rare events, such as arrhythmia triggers.

     
    more » « less