skip to main content


Title: Dense-Caption Matching and Frame-Selection Gating for Temporal Localization in VideoQA
Videos convey rich information. Dynamic spatio-temporal relationships between people/objects, and diverse multimodal events are present in a video clip. Hence, it is important to develop automated models that can accurately extract such information from videos. Answering questions on videos is one of the tasks which can evaluate such AI abilities. In this paper, we propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions. Specifically, we first employ dense image captions to help identify objects and their detailed salient regions and actions, and hence give the model useful extra information (in explicit textual format to allow easier matching) for answering questions. Moreover, our model is also comprised of dual-level attention (word/object and frame level), multi-head self/cross-integration for different sources (video and dense captions), and gates which pass more relevant information to the classifier. Finally, we also cast the frame selection problem as a multi-label classification task and introduce two loss functions, In-andOut Frame Score Margin (IOFSM) and Balanced Binary Cross-Entropy (BBCE), to better supervise the model with human importance annotations. We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin (74.09% versus 70.52%). We also present several word, object, and frame level visualization studies.  more » « less
Award ID(s):
1840131
NSF-PAR ID:
10198351
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Page Range / eLocation ID:
4812 to 4822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Paragraph-style image captions describe diverse aspects of an image as opposed to the more common single-sentence captions that only provide an abstract description of the image. These paragraph captions can hence contain substantial information of the image for tasks such as visual question answering. Moreover, this textual information is complementary with visual information present in the image because it can discuss both more abstract concepts and more explicit, intermediate symbolic information about objects, events, and scenes that can directly be matched with the textual question and copied into the textual answer (i.e., via easier modality match). Hence, we propose a combined Visual and Textual Question Answering (VTQA) model which takes as input a paragraph caption as well as the corresponding image, and answers the given question based on both inputs. In our model, the inputs are fused to extract related information by cross-attention (early fusion), then fused again in the form of consensus (late fusion), and finally expected answers are given an extra score to enhance the chance of selection (later fusion). Empirical results show that paragraph captions, even when automatically generated (via an RL-based encoder-decoder model), help correctly answer more visual questions. Overall, our joint model, when trained on the Visual Genome dataset, significantly improves the VQA performance over a strong baseline model. 
    more » « less
  2. null (Ed.)
    Captioning is a crucial and challenging task for video understanding. In videos that involve active agents such as humans, the agent{'}s actions can bring about myriad changes in the scene. Observable changes such as movements, manipulations, and transformations of the objects in the scene, are reflected in conventional video captioning. Unlike images, actions in videos are also inherently linked to social aspects such as intentions (why the action is taking place), effects (what changes due to the action), and attributes that describe the agent. Thus for video understanding, such as when captioning videos or when answering questions about videos, one must have an understanding of these commonsense aspects. We present the first work on generating \textit{commonsense} captions directly from videos, to describe latent aspects such as intentions, effects, and attributes. We present a new dataset {``}Video-to-Commonsense (V2C){''} that contains {\textasciitilde}9k videos of human agents performing various actions, annotated with 3 types of commonsense descriptions. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions. Both the generation task and the QA task can be used to enrich video captions. 
    more » « less
  3. The growth of the Web in recent years has resulted in the development of various online platforms that provide healthcare information services. These platforms contain an enormous amount of information, which could be beneficial for a large number of people. However, navigating through such knowledgebases to answer specific queries of healthcare consumers is a challenging task. A majority of such queries might be non-factoid in nature, and hence, traditional keyword-based retrieval models do not work well for such cases. Furthermore, in many scenarios, it might be desirable to get a short answer that sufficiently answers the query, instead of a long document with only a small amount of useful information. In this paper, we propose a neural network model for ranking documents for question answering in the healthcare domain. The proposed model uses a deep attention mechanism at word, sentence, and document levels, for efficient retrieval for both factoid and non-factoid queries, on documents of varied lengths. Specifically, the word-level cross-attention allows the model to identify words that might be most relevant for a query, and the hierarchical attention at sentence and document levels allows it to do effective retrieval on both long and short documents. We also construct a new large-scale healthcare question-answering dataset, which we use to evaluate our model. Experimental evaluation results against several state-of-the-art baselines show that our model outperforms the existing retrieval techniques. 
    more » « less
  4. Language-guided smart systems can help to design next-generation human-machine interactive applications. The dense text description is one of the research areas where systems learn the semantic knowledge and visual features of each video frame and map them to describe the video's most relevant subjects and events. In this paper, we consider untrimmed sports videos as our case study. Generating dense descriptions in the sports domain to supplement journalistic works without relying on commentators and experts requires more investigation. Motivated by this, we propose an end-to-end automated text-generator, SpecTextor, that learns the semantic features from untrimmed videos of sports games and generates associated descriptive texts. The proposed approach considers the video as a sequence of frames and sequentially generates words. After splitting videos into frames, we use a pre-trained VGG-16 model for feature extraction and encoding the video frames. With these encoded frames, we posit a Long Short-Term Memory (LSTM) based attention-decoder pipeline that leverages soft-attention mechanism to map the semantic features with relevant textual descriptions to generate the explanation of the game. Because developing a comprehensive description of the game warrants training on a set of dense time-stamped captions, we leverage two available public datasets: ActivityNet Captions and Microsoft Video Description. In addition, we utilized two different decoding algorithms: beam search and greedy search and computed two evaluation metrics: BLEU and METEOR scores. 
    more » « less
  5. Abstract

    Advances in visual perceptual tasks have been mainly driven by the amount, and types, of annotations of large-scale datasets. Researchers have focused on fully-supervised settings to train models using offline epoch-based schemes. Despite the evident advancements, limitations and cost of manually annotated datasets have hindered further development for event perceptual tasks, such as detection and localization of objects and events in videos. The problem is more apparent in zoological applications due to the scarcity of annotations and length of videos-most videos are at most ten minutes long. Inspired by cognitive theories, we present a self-supervised perceptual prediction framework to tackle the problem of temporal event segmentation by building a stable representation of event-related objects. The approach is simple but effective. We rely on LSTM predictions of high-level features computed by a standard deep learning backbone. For spatial segmentation, the stable representation of the object is used by an attention mechanism to filter the input features before the prediction step. The self-learned attention maps effectively localize the object as a side effect of perceptual prediction. We demonstrate our approach on long videos from continuous wildlife video monitoring, spanning multiple days at 25 FPS. We aim to facilitate automated ethogramming by detecting and localizing events without the need for labels. Our approach is trained in an online manner on streaming input and requires only a single pass through the video, with no separate training set. Given the lack of long and realistic (includes real-world challenges) datasets, we introduce a new wildlife video dataset–nest monitoring of the Kagu (a flightless bird from New Caledonia)–to benchmark our approach. Our dataset features a video from 10 days (over 23 million frames) of continuous monitoring of the Kagu in its natural habitat. We annotate every frame with bounding boxes and event labels. Additionally, each frame is annotated with time-of-day and illumination conditions. We will make the dataset, which is the first of its kind, and the code available to the research community. We find that the approach significantly outperforms other self-supervised, traditional (e.g., Optical Flow, Background Subtraction) and NN-based (e.g., PA-DPC, DINO, iBOT), baselines and performs on par with supervised boundary detection approaches (i.e., PC). At a recall rate of 80%, our best performing model detects one false positive activity every 50 min of training. On average, we at least double the performance of self-supervised approaches for spatial segmentation. Additionally, we show that our approach is robust to various environmental conditions (e.g., moving shadows). We also benchmark the framework on other datasets (i.e., Kinetics-GEBD, TAPOS) from different domains to demonstrate its generalizability. The data and code are available on our project page:https://aix.eng.usf.edu/research_automated_ethogramming.html

     
    more » « less