Effectively integrating knowledge into end-to-end task-oriented dialog systems remains a challenge. It typically requires incorporation of an external knowledge base (KB) and capture of the intrinsic semantics of the dialog history. Recent research shows promising results by using Sequence-to-Sequence models, Memory Networks, and even Graph Convolutional Networks. However, current state-of-the-art models are less effective at integrating dialog history and KB into task-oriented dialog systems in the following ways: 1. The KB representation is not fully context-aware. The dynamic interaction between the dialog history and KB is seldom explored. 2. Both the sequential and structural information in the dialog history can contribute to capturing the dialog semantics, but they are not studied concurrently. In this paper, we propose a novel Graph Memory Network (GMN) based Seq2Seq model, GraphMemDialog, to effectively learn the inherent structural information hidden in dialog history, and to model the dynamic interaction between dialog history and KBs. We adopt a modified graph attention network to learn the rich structural representation of the dialog history, whereas the context-aware representation of KB entities are learnt by our novel GMN. To fully exploit this dynamic interaction, we design a learnable memory controller coupled with external KB entity memories to recurrently incorporate dialog history context into KB entities through a multi-hop reasoning mechanism. Experiments on three public datasets show that our GraphMemDialog model achieves state-of-the-art performance and outperforms strong baselines by a large margin, especially on datatests with more complicated KB information.
more »
« less
Modality-Balanced Models for Visual Dialogue
The Visual Dialog task requires a model to exploit both im- age and conversational context information to generate the next response to the dialogue. However, via manual analysis, we find that a large number of conversational questions can be answered by only looking at the image without any access to the context history, while others still need the conversa- tion context to predict the correct answers. We demonstrate that due to this reason, previous joint-modality (history and image) models over-rely on and are more prone to memoriz- ing the dialogue history (e.g., by extracting certain keywords or patterns in the context information), whereas image-only models are more generalizable (because they cannot memo- rize or extract keywords from history) and perform substan- tially better at the primary normalized discounted cumula- tive gain (NDCG) task metric which allows multiple correct answers. Hence, this observation encourages us to explic- itly maintain two models, i.e., an image-only model and an image-history joint model, and combine their complementary abilities for a more balanced multimodal model. We present multiple methods for this integration of the two models, via ensemble and consensus dropout fusion with shared param- eters. Empirically, our models achieve strong results on the Visual Dialog challenge 2019 (rank 3 on NDCG and high bal- ance across metrics), and substantially outperform the winner of the Visual Dialog challenge 2018 on most metrics.
more »
« less
- Award ID(s):
- 1840131
- PAR ID:
- 10198352
- Date Published:
- Journal Name:
- The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Paragraph-style image captions describe diverse aspects of an image as opposed to the more common single-sentence captions that only provide an abstract description of the image. These paragraph captions can hence contain substantial information of the image for tasks such as visual question answering. Moreover, this textual information is complementary with visual information present in the image because it can discuss both more abstract concepts and more explicit, intermediate symbolic information about objects, events, and scenes that can directly be matched with the textual question and copied into the textual answer (i.e., via easier modality match). Hence, we propose a combined Visual and Textual Question Answering (VTQA) model which takes as input a paragraph caption as well as the corresponding image, and answers the given question based on both inputs. In our model, the inputs are fused to extract related information by cross-attention (early fusion), then fused again in the form of consensus (late fusion), and finally expected answers are given an extra score to enhance the chance of selection (later fusion). Empirical results show that paragraph captions, even when automatically generated (via an RL-based encoder-decoder model), help correctly answer more visual questions. Overall, our joint model, when trained on the Visual Genome dataset, significantly improves the VQA performance over a strong baseline model.more » « less
-
Conversational AI is a rapidly developing research field in both industry and academia. As one of the major branches of conversational AI, question answering and conversational search has attracted significant attention of researchers in the information retrieval community. It has been a long overdue feature for search engines or conversational assistants to retrieve information iteratively and interactively in a conversational manner. Previous work argues that conversational question answering (ConvQA) is a simplified but concrete setting of conversational search. In this setting, one of the major challenges is to leverage the conversation history to understand and answer the current question. In this work, we propose a novel solution for ConvQA that involves three aspects. First, we propose a positional history answer embedding method to encode conversation history with position information using BERT (Bidirectional Encoder Representations from Transformers) in a natural way. BERT is a powerful technique for text representation. Second, we design a history attention mechanism (HAM) to conduct a "soft selection" for conversation histories. This method attends to history turns with different weights based on how helpful they are on answering the current question. Third, in addition to handling conversation history, we take advantage of multi-task learning (MTL) to do answer prediction along with another essential conversation task (dialog act prediction) using a uniform model architecture. MTL is able to learn more expressive and generic representations to improve the performance of ConvQA. We demonstrate the effectiveness of our model with extensive experimental evaluations on QuAC, a large-scale ConvQA dataset. We show that position information plays an important role in conversation history modeling. We also visualize the history attention and provide new insights into conversation history understanding. The complete implementation of our model will be open-sourced.more » « less
-
Modern task-oriented dialog systems need to reliably understand users’ intents. Intent detection is even more challenging when moving to new domains or new languages, since there is little annotated data. To address this challenge, we present a suite of pretrained intent detection models which can predict a broad range of intended goals from many actions because they are trained on wikiHow, a comprehensive instructional website. Our models achieve state-of-the-art results on the Snips dataset, the Schema-Guided Dialogue dataset, and all 3 languages of the Facebook multilingual dialog datasets. Our models also demonstrate strong zero- and few-shot performance, reaching over 75% accuracy using only 100 training examples in all datasets.more » « less
-
Recent years have witnessed the emerging of conversational systems, including both physical devices and mobile-based applications, such as Amazon Echo, Google Now, Microsoft Cortana, Apple Siri, and many others. Both the research community and industry believe that conversational systems will have a major impact on human-computer interaction, and specifically, the IR community has begun to focus on Conversational Search. Conversational search based on user-system dialog exhibits major differences from conventional search in that 1) the user and system can interact for multiple semantically coherent rounds on a task through natural language dialog, and 2) it becomes possible for the system to understand user needs or to help users clarify their needs by asking appropriate questions from the users directly. In this paper, we propose and evaluate a unified conversational search framework. Specifically, we define the major components for conversational search, assemble them into a unified framework, and test an implementation of the framework using a conversational product search scenario in Amazon. To accomplish this, we propose the Multi-Memory Network (MMN) architecture, which is end-to-end trainable based on large-scale collections of user reviews in e-commerce. The system is capable of asking aspect-based questions in the right order so as to understand user needs, while (personalized) search is conducted during the conversation and results are provided when the system feels confident. Experiments on real-world user purchasing data verified the advantages of conversational search against conventional search algorithms in terms of standard evaluation measures such as NDCG.more » « less
An official website of the United States government

