skip to main content


Title: Leveraging Monostable and Bistable Pre‐Curved Bilayer Actuators for High‐Performance Multitask Soft Robots
Abstract

Soft actuators are typically designed to be inherently stress‐free and stable. Relaxing such a design constraint allows exploration of harnessing mechanical prestress and elastic instability to achieve potential high‐performance soft robots. Here, the strategy of prestrain relaxation is leveraged to design pre‐curved soft actuators in 2D and 3D with tunable monostability and bistability that can be implemented for multifunctional soft robotics. By bonding stress‐free active layer with embedded pneumatic channels to a uniaxially or biaxially pre‐stretched elastomeric strip or disk, pre‐curved 2D beam‐like bending actuators and 3D doming actuators are generated after prestrain release, respectively. Such pre‐curved soft actuators exhibit tunable monostable and bistable behavior under actuation by simply manipulating the prestrain and the biased bilayer thickness ratio. Their implications in multifunctional soft robotics are demonstrated in achieving high performance in manipulation and locomotion, including energy‐efficient soft gripper to holding objects through prestress, fast‐speed larva‐like jumping soft crawler with average locomotion speed of 0.65 body‐length s−1(51.4 mm s−1), and fast swimming bistable jellyfish‐like soft robot with an average speed of 53.3 mm s−1.

 
more » « less
Award ID(s):
2010717 2005374
NSF-PAR ID:
10456799
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
5
Issue:
9
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Snap‐through bistability is often observed in nature (e.g., fast snapping to closure of Venus flytrap) and the life (e.g., bottle caps and hair clippers). Recently, harnessing bistability and multistability in different structures and soft materials has attracted growing interest for high‐performance soft actuators and soft robots. They have demonstrated broad and unique applications in high‐speed locomotion on land and under water, adaptive sensing and fast grasping, shape reconfiguration, electronics‐free controls with a single input, and logic computation. Here, an overview of integrating bistable and multistable structures with soft actuating materials for diverse soft actuators and soft/flexible robots is given. The mechanics‐guided structural design principles for five categories of basic bistable elements from 1D to 3D (i.e., constrained beams, curved plates, dome shells, compliant mechanisms of linkages with flexible hinges and deformable origami, and balloon structures) are first presented, alongside brief discussions of typical soft actuating materials (i.e., fluidic elastomers and stimuli‐responsive materials such as electro‐, photo‐, thermo‐, magnetic‐, and hydro‐responsive polymers). Following that, integrating these soft materials with each category of bistable elements for soft bistable and multistable actuators and their diverse robotic applications are discussed. To conclude, perspectives on the challenges and opportunities in this emerging field are considered.

     
    more » « less
  2. Abstract

    Matching the rich multimodality of natural organisms, i.e., the ability to transition between crawling and swimming, walking and jumping, etc., represents a grand challenge in the fields of soft and bio‐inspired robotics. Here, a multimodal soft robot locomotion using highly compact and dynamic bistable soft actuators is achieved. These actuators are composed of a prestretched membrane sandwiched between two 3D printed frames with embedded shape memory alloy (SMA) coils. The actuator can swiftly transform between two oppositely curved states and generate a force of 0.3 N through a snap‐through instability that is triggered after 0.2 s of electrical activation with an input power of 21.1 ± 0.32W(i.e., electrical energy input of 4.22 ± 0.06J. The consistency and robustness of the snap‐through actuator response is experimentally validated through cyclical testing (580 cycles). The compact and fast‐responding properties of the soft bistable actuator allow it to be used as an artificial muscle for shape‐reconfigurable soft robots capable of multiple modes of SMA‐powered locomotion. This is demonstrated by creating three soft robots, including a reconfigurable amphibious robot that can walk on land and swim in water, a jumping robot (multimodal crawler) that can crawl and jump, and a caterpillar‐inspired rolling robot that can crawl and roll.

     
    more » « less
  3. Abstract

    Dielectric elastomer actuators (DEAs) are soft electromechanical devices that exhibit large energy densities and fast actuation rates. They are typically produced by planar methods and, thus, expand in‐plane when actuated. Here, reported is a method for fabricating 3D interdigitated DEAs that exhibit in‐plane contractile actuation modes. First, a conductive elastomer ink is created with the desired rheology needed for printing high‐fidelity, interdigitated electrodes. Upon curing, the electrodes are then encapsulated in a self‐healing dielectric matrix composed of a plasticized, chemically crosslinked polyurethane acrylate. 3D DEA devices are fabricated with tunable mechanical properties that exhibit breakdown fields of 25 V µm−1and actuation strains of up to 9%. As exemplars, printed are prestrain‐free rotational actuators and multi‐voxel DEAs with orthogonal actuation directions in large‐area, out‐of‐plane motifs.

     
    more » « less
  4. Soft machines typically exhibit slow locomotion speed and low manipulation strength because of intrinsic limitations of soft materials. Here, we present a generic design principle that harnesses mechanical instability for a variety of spine-inspired fast and strong soft machines. Unlike most current soft robots that are designed as inherently and unimodally stable, our design leverages tunable snap-through bistability to fully explore the ability of soft robots to rapidly store and release energy within tens of milliseconds. We demonstrate this generic design principle with three high-performance soft machines: High-speed cheetah-like galloping crawlers with locomotion speeds of 2.68 body length/s, high-speed underwater swimmers (0.78 body length/s), and tunable low-to-high-force soft grippers with over 1 to 10 3 stiffness modulation (maximum load capacity is 11.4 kg). Our study establishes a new generic design paradigm of next-generation high-performance soft robots that are applicable for multifunctionality, different actuation methods, and materials at multiscales. 
    more » « less
  5. Abstract

    Advancing biologically driven soft robotics and actuators will involve employing different scaffold geometries and cellular constructs to enable a controllable emergence for increased production of force. By using hydrogel scaffolds and muscle tissue, soft biological robotic actuators that are capable of motility have been successfully engineered with varying morphologies. Having the flexibility of altering geometry while ensuring tissue viability can enable advancing functional output from these machines through the implementation of new construction concepts and fabrication approaches. This study reports a forward engineering approach to computationally design the next generation of biological machines via direct numerical simulations. This was subsequently followed by fabrication and characterization of high force producing biological machines. These biological machines show millinewton forces capable of driving locomotion at speeds above 0.5 mm s−1. It is important to note that these results are predicted by computational simulations, ultimately showing excellent agreement of the predictive models and experimental results, further providing the ability to forward design future generations of these biological machines. This study aims to develop the building blocks and modular technologies capable of scaling force and complexity of these devices for applications toward solving real world problems in medicine, environment, and manufacturing.

     
    more » « less