skip to main content


Title: Birefringent Fourier filtering for single molecule coordinate and height super-resolution imaging with dithering and orientation
Abstract

Super-resolution imaging based on single molecule localization allows accessing nanometric-scale information in biological samples with high precision. However, complete measurements including molecule orientation are still challenging. Orientation is intrinsically coupled to position in microscopy imaging, and molecular wobbling during the image integration time can bias orientation measurements. Providing 3D molecular orientation and orientational fluctuations would offer new ways to assess the degree of alignment of protein structures, which cannot be monitored by pure localization. Here we demonstrate that by adding polarization control to phase control in the Fourier plane of the imaging path, all parameters can be determined unambiguously from single molecules: 3D spatial position, 3D orientation and wobbling or dithering angle. The method, applied to fluorescent labels attached to single actin filaments, provides precisions within tens of nanometers in position and few degrees in orientation.

 
more » « less
NSF-PAR ID:
10198539
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precisely measuring the three-dimensional position and orientation of individual fluorophores is challenging due to the substantial photon shot noise in single-molecule experiments. Facing this limited photon budget, numerous techniques have been developed to encode 2D and 3D position and 2D and 3D orientation information into fluorescence images. In this work, we adapt classical and quantum estimation theory and propose a mathematical framework to derive the best possible precision for measuring the position and orientation of dipole-like emitters for any fixed imaging system. We find that it is impossible to design an instrument that achieves the maximum sensitivity limit for measuring all possible rotational motions. Further, our vectorial dipole imaging model shows that the best quantum-limited localization precision is 4%–8% worse than that suggested by a scalar monopole model. Overall, we conclude that no single instrument can be optimized for maximum precision across all possible 2D and 3D localization and orientation measurement tasks.

     
    more » « less
  2. Abstract

    In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve nanodomains and enzyme‐induced compositional heterogeneity within membranes, where NR within liquid‐ordered vs. liquid‐disordered domains shows a ≈4° difference in polar angle and a ≈0.3π sr difference in wobble angle. As a new type of imaging spectroscopy, SMOLM exposes the organizational and functional dynamics of lipid‐lipid, lipid‐protein, and lipid‐dye interactions with single‐molecule, nanoscale resolution.

     
    more » « less
  3. Abstract

    In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve nanodomains and enzyme‐induced compositional heterogeneity within membranes, where NR within liquid‐ordered vs. liquid‐disordered domains shows a ≈4° difference in polar angle and a ≈0.3π sr difference in wobble angle. As a new type of imaging spectroscopy, SMOLM exposes the organizational and functional dynamics of lipid‐lipid, lipid‐protein, and lipid‐dye interactions with single‐molecule, nanoscale resolution.

     
    more » « less
  4. Imaging of both the positions and orientations of single fluorophores, termed single-molecule orientation-localization microscopy, is a powerful tool for the study of biochemical processes. However, the limited photon budget associated with single-molecule fluorescence makes high-dimensional imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here we realize a radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of the three-dimensional (3D) positions and 3D orientations of single molecules, with precisions of 10.9 nm and 2.0° over a 1.5-μm depth range. The raMVR microscope achieves 6D super-resolution imaging of Nile red molecules transiently bound to lipid-coated spheres, accurately resolving their spherical morphology, despite refractive-index mismatch. By observing the rotational dynamics of Nile red, raMVR images also resolve the infiltration of lipid membranes by amyloid-beta oligomers without covalent labelling. Finally, we demonstrate 6D imaging of cell membranes, where the orientations of specific fluorophores reveal heterogeneity in membrane fluidity. With its nearly isotropic 3D spatial resolution and orientation measurement precision, we expect the raMVR microscope to enable 6D imaging of molecular dynamics within biological and chemical systems with exceptional detail. 
    more » « less
  5. In single-molecule super-resolution microscopy, engineered point-spread functions (PSFs) are designed to efficiently encode new molecular properties, such as 3D orientation, into complex spatial features captured by a camera. To fully benefit from their optimality, algorithms must estimate multi-dimensional parameters such as molecular position and orientation in the presence of PSF overlap and model-experiment mismatches. Here, we present a novel joint sparse deconvolution algorithm based on the decomposition of fluorescence images into six basis images that characterize molecular orientation. The proposed algorithm exploits a group-sparsity structure across these basis images and applies a pooling strategy on corresponding spatial features for robust simultaneous estimates of the number, brightness, 2D position, and 3D orientation of fluorescent molecules. We demonstrate this method by imaging DNA transiently labeled with the intercalating dye YOYO-1. Imaging the position and orientation of each molecule reveals orientational order and disorder within DNA with nanoscale spatial precision. 
    more » « less