skip to main content


Title: Land subsidence contributions to relative sea level rise at tide gauge Galveston Pier 21, Texas
Abstract

Relative sea level rise at tide gauge Galveston Pier 21, Texas, is the combination of absolute sea level rise and land subsidence. We estimate subsidence rates of 3.53 mm/a during 1909–1937, 6.08 mm/a during 1937–1983, and 3.51 mm/a since 1983. Subsidence attributed to aquifer-system compaction accompanying groundwater extraction contributed as much as 85% of the 0.7 m relative sea level rise since 1909, and an additional 1.9 m is projected by 2100, with contributions from land subsidence declining from 30 to 10% over the projection interval. We estimate a uniform absolute sea level rise rate of 1.10 mm ± 0.19/a in the Gulf of Mexico during 1909–1992 and its acceleration of 0.270 mm/a2at Galveston Pier 21 since 1992. This acceleration is 87% of the value for the highest scenario of global mean sea level rise. Results indicate that evaluating this extreme scenario would be valid for resource-management and flood-hazard-mitigation strategies for coastal communities in the Gulf of Mexico, especially those affected by subsidence.

 
more » « less
Award ID(s):
1832065
NSF-PAR ID:
10198670
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rate at which sea level is rising in recent years due to global warming has become a growing concern, most especially as it affects coastal areas of the world. The devastating impact of sea level rise (SLR) on coastal communities, ranging from coastal beach erosion, nuisance high tide flooding, and saltwater pollution of low-lying farmlands to loss of tidal wetlands is leading to a decline in social and economic activities especially in coastal areas. According to the National Oceanic and Atmospheric Administration (NOAA), 40% of the US population living on the coast is inevitably vulnerable to SLR. Therefore, the objective of this study is to project relative sea level rise (RSLR) for Anne Arundel County and to estimate the contribution of land subsidence to RSLR at this location. To project RSLR for Anne Arundel County, this study combines global mean sea level rise (GMSLR) scenarios with local land subsidence measured at GPS LOYF station in Annapolis, Anne Arundel County, Maryland. Current quadratic trend of RSLR in Anne Arundel County projects that by 2100, RSLR for the county will be approximately 1.2 m forecasting from 1992, which is 86% and 174% of the GMSLR intermediate-high and intermediate-low scenarios, respectively. Land subsidence significantly contributed to RSLR in the 20th century; however, since 2001 absolute sea level rise (ASLR) driven by climate change has significantly contributed to RSLR in this location. The results in this paper suggest considering the intermediate-high RSLR scenario for planning and decision-making in Anne Arundel County, Maryland, in relation to SLR. 
    more » « less
  2. As much as 3.05 m of land subsidence was observed in 1979 in the Houston-Galveston region as a result primarily of inelastic compaction of aquitards in the Chicot and Evangeline aquifers between 1937 and 1979. The preconsolidation pressure heads for aquitards within these two aquifers were continuously updated in response to lowering groundwater levels, which in turn was caused by continuously increasing groundwater withdrawal rates from 0.57 to 4.28 million m3/day. This land subsidence occurred without any management of changes in groundwater levels. However, the management of recovering groundwater levels from 1979 to 2000 successfully decreased inelastic compaction from about 40 mm/yr in the early 1980s to zero around 2000 through decreasing groundwater withdrawal rates from 4.3 to 3.0 million m3/day. The inelastic consolidation that had existed for about 63 years roughly from 1937 to 2000 caused a land subsidence hazard in this region. Some rebounding of the land surface was achieved from groundwater level recovering management. It is found in this paper that subsidence of 0.08 to 8.49 mm/yr owing to a pseudo-constant secondary consolidation rate emerged or tended to emerge at 13 borehole extensometer station locations while the groundwater levels in the two aquifers were being managed. It is considered to remain stable in trend since 2000. The subsidence due to the secondary consolidation is beyond the control of any groundwater level change management schemes because it is caused by geo-historical overburden pressure on the two aquifers. The compaction measurements collected from the 13 extensometers since 1971 not only successfully corroborate the need for groundwater level change management in controlling land subsidence but also yield the first empirical findings of the occurrence of secondary consolidation subsidence in the Quaternary and Tertiary aquifer systems in the Houston-Galveston region. 
    more » « less
  3. The Chesapeake Bay (CB) is the largest estuary in the United States, and a large bolide crashed into it 35 million years ago. This study analyzed observations from seven pairs of closely spaced tide gauges (TG) and GPS stations around the CB to simulate relative sea level rise (RSLR) since the 20th century. Outcrops or subcrops are pre-Cretaceous (pre-C), Cretaceous (C), Tertiary (T), and Quaternary (Q) from the Northwest to the Southeast in the CB coastal plain. RSLR at TG is assumed to be the sum of paired GPS-detected land subsidence (LS) and absolute sea level rise (ASLR) in this paper. Before 1992 in the 20th century, TG Washington, DC, located in the pre-C outcrop/subcrop zone appears to have RSLR and LS rates of (2.68, 1.58) mm/year; TG Baltimore in the C zone (3.0, 1.9) mm/year; TGs Annapolis, Cambridge, and Solomon Island in the T zone (3.39, 2.24) mm/year, (3.45, 2.34) mm/year, and (3.75, 2.66) mm/year, respectively; and TGs Kiptopeke and Yorktown in the Q zone (4.05, 2.95) mm/year and (3.06, 1.96) mm/year, respectively. The LS rate increases from the pre-C through Q zones except the Yorktown station impacted by the crater; the ASLR before 1992 in the 20th century in the CB area is in the range of 1.10 mm/year–1.15 mm/year by removing LS from RSLR at above seven TG locations. 
    more » « less
  4. Abstract

    The vulnerability of coastal environments to sea-level rise varies spatially, particularly due to local land subsidence. However, high-resolution observations and models of coastal subsidence are scarce, hindering an accurate vulnerability assessment. We use satellite data from 2007 to 2020 to create high-resolution map of subsidence rate at mm-level accuracy for different land covers along the ~3,500 km long US Atlantic coast. Here, we show that subsidence rate exceeding 3 mm per year affects most coastal areas, including wetlands, forests, agricultural areas, and developed regions. Coastal marshes represent the dominant land cover type along the US Atlantic coast and are particularly vulnerable to subsidence. We estimate that 58 to 100% of coastal marshes are losing elevation relative to sea level and show that previous studies substantially underestimate marsh vulnerability by not fully accounting for subsidence.

     
    more » « less
  5. ABSTRACT The compaction measurements of Quaternary and Tertiary Gulf Coast aquifer system sediments in the Houston-Galveston region (TX) show spatially variable compression of 0.08 to 8.49 mm/yr because of geohistorical overburden pressure when groundwater levels in the aquifer system were stable after about the year 2000. An aquifer-system creep equation is developed for evaluating this variable compression, with a thickness-weighted average creep coefficient based on Taylor's (1942) secondary consolidation theory. The temporal variation of aquifer system creep can be neglected in a short-term observation period (such as a decade) after a long-term creep period (such as over 1,000 years) in geohistory. The creep coefficient of the Gulf Coast aquifer system is found to be in a range of 8.74 × 10−5 to 3.94 × 10−3 (dimensionless), with an average of 1.38 × 10−3. Moreover, for silty clay or clay-dominant aquitards in the Gulf Coast aquifer system the creep coefficient value varies in the range of 2.21 × 10−4 to 3.94 × 10−3, which is consistent with values found by Mesri (1973) for most soils, which vary in the range of creep coefficient, 1 × 10−4 to 5 × 10−3. Land subsidence due to secondary consolidation of the Gulf Coast aquifer system is estimated to be 0.04 to 4.33 m in the 20th century and is projected to be 0.01 to 0.64 m in the 21st century at the 13 borehole extensometer locations in the Houston-Galveston region. The significant creep should be considered in the relative sea level rise, in addition to tectonic subsidence and primary consolidation. 
    more » « less