We present a model for recognizing typeset math formula images from connected components or symbols. In our approach, connected components are used to construct a line-of-sight (LOS) graph. The graph is used both to reduce the search space for formula structure interpretations, and to guide a classification attention model using separate channels for inputs and their local visual context. For classification, we used visual densities with Random Forests for initial development, and then converted this to a Convolutional Neural Network (CNN) with a second branch to capture context for each input image. Formula structure is extracted as a directed spanning tree from a weighted LOS graph using Edmonds’ algorithm. We obtain strong results for formulas without grids or matrices in the InftyCDB-2 dataset (90.89% from components, 93.5% from symbols). Using tools from the CROHME handwritten formula recognition competitions, we were able to compile all symbol and structure recognition errors for analysis. Our data and source code are publicly available. 
                        more » 
                        « less   
                    
                            
                            Visual Parsing with Query-Driven Global Graph Attention (QD-GGA): Preliminary Results for Handwritten Math Formula Recognition
                        
                    
    
            We present a new visual parsing method based on convolutional neural networks for handwritten mathematical formulas. The Query-Driven Global Graph Attention (QD- GGA) parsing model employs multi-task learning, and uses a single feature representation for locating, classifying, and relating symbols. First, a Line-Of-Sight (LOS) graph is computed over the handwritten strokes in a formula. Second, class distributions for LOS nodes and edges are obtained using query-specific feature filters (i.e., attention) in a single feed-forward pass. Finally, a Maximum Spanning Tree (MST) is extracted from the weighted graph. Our preliminary results show that this is a promising new approach for visual parsing of handwritten formulas. Our data and source code are publicly available. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1717997
- PAR ID:
- 10198732
- Date Published:
- Journal Name:
- Proc. CVPR Workshop on Text and Documents ion the Deep Learning Era
- Page Range / eLocation ID:
- 2429 to 2438
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            o fill a gap in online educational tools, we are working to support search in lecture videos using formulas from lecture notes and vice versa. We use an existing system to convert single-shot lecture videos to keyframe images that capture whiteboard contents along with the times they appear. We train classifiers for handwritten symbols using the CROHME dataset, and for LATEX symbols using generated images. Symbols detected in video keyframes and LATEX formula images are indexed using Line-of-Sight graphs. For search, we lookup pairs of symbols that can 'see' each other, and connected pairs are merged to identify the largest match within each indexed image. We rank matches using symbol class probabilities and angles between symbol pairs. We demonstrate how our method effectively locates formulas between typeset and handwritten images using a set of linear algebra lectures. By combining our search engine Tangent-V) with temporal keyframe metadata, we are able to navigate to where a query formula in LATEX is first handwritten in a lecture video. Our system is available as open-source. For other domains, only the OCR modules require updating.more » « less
- 
            We present a visual search engine for graphics such as math, chemical diagrams, and figures. Graphics are represented using Line-of- Sight (LOS) graphs, with symbols connected only when they can ‘see’ each other along an unobstructed line. Symbol identities may be provided (e.g., in PDF) or taken from Optical Character Recognition applied to images. Graphics are indexed by pairs of symbols that ‘see’ each other using their labels, spatial displacement, and size ratio. Retrieval has two layers: the first matches query symbol pairs in an inverted index, while the second aligns candidates with the query and scores the resulting matches using the identity and relative position of symbols. For PDFs, we also introduce a new tool that quickly extracts characters and their lo- cations. We have applied our model to the NTCIR-12 Wikipedia Formula Browsing Task, and found that the method can locate relevant matches without unification of symbols or using a math expression grammar. In the future, one might index LOS graphs for entire pages and search for text and graphics. Our source code has been made publicly available.more » « less
- 
            Visual Query Answering (VQA) is of great significance in offering people convenience: one can raise a question for details of objects, or high-level understanding about the scene, over an image. This paper proposes a novel method to address the VQA problem. In contrast to prior works, our method that targets single scene VQA, replies on graph-based techniques and involves reasoning. In a nutshell, our approach is centered on three graphs. The first graph, referred to as inference graph GI , is constructed via learning over labeled data. The other two graphs, referred to as query graph Q and entity-attribute graph GEA, are generated from natural language query Qnl and image Img, that are issued from users, respectively. As GEA often does not take sufficient information to answer Q, we develop techniques to infer missing information of GEA with GI . Based on GEA and Q, we provide techniques to find matches of Q in GEA, as the answer of Qnl in Img. Unlike commonly used VQA methods that are based on end-to-end neural networks, our graph-based method shows well-designed reasoning capability, and thus is highly interpretable. We also create a dataset on soccer match (Soccer-VQA) with rich annotations. The experimental results show that our approach outperforms the state-of-the-art method and has high potential for future investigation.more » « less
- 
            null (Ed.)The paper proposes a new text recognition network for scene-text images. Many state-of-the-art methods employ the attention mechanism either in the text encoder or decoder for the text alignment. Although the encoder-based attention yields promising results, these schemes inherit noticeable limitations. They perform the feature extraction (FE) and visual attention (VA) sequentially, which bounds the attention mechanism to rely only on the FE final single-scale output. Moreover, the utilization of the attention process is limited by only applying it directly to the single scale feature-maps. To address these issues, we propose a new multi-scale and encoder-based attention network for text recognition that performs the multi-scale FE and VA in parallel. The multi-scale channels also undergo regular fusion with each other to develop the coordinated knowledge together. Quantitative evaluation and robustness analysis on the standard benchmarks demonstrate that the proposed network outperforms the state-of-the-art in most cases.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    