skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MathSeer: A Math-Aware Search Interface with Intuitive Formula Editing, Reuse, and Lookup
There has been growing interest in math-aware search engines that support retrieval using both formulas and keywords. An important unresolved issue is the design of search interfaces: for wide adoption, they must be engaging and easy-to-use, particularly for non-experts. The MathSeer interface addresses this with straightforward formula creation, editing, and lookup. Formulas are stored in ‘chips’ created using handwriting, LATEX, and images. MathSeer sessions are also stored at automatically generated URLs that save all chips and their editing history. To avoid re-entering formulas, chips can be reused, edited, or used in creating other formulas. As users enter formulas, our novel autocompletion facility returns entity cards searchable by formula or entity name, making formulas easy to (re)locate, and descriptions of symbols and notation available before queries are issued.  more » « less
Award ID(s):
1717997
PAR ID:
10198747
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proc. European Conference on Information Retrieval
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Demand for image editing has been increasing as users' desire for expression is also increasing. However, for most users, image editing tools are not easy to use since the tools require certain expertise in photo effects and have complex interfaces. Hence, users might need someone to help edit their images, but having a personal dedicated human assistant for every user is impossible to scale. For that reason, an automated assistant system for image editing is desirable. Additionally, users want more image sources for diverse image editing works, and integrating an image search functionality into the editing tool is a potential remedy for this demand. Thus, we propose a dataset of an automated Conversational Agent for Image Search and Editing (CAISE). To our knowledge, this is the first dataset that provides conversational image search and editing annotations, where the agent holds a grounded conversation with users and helps them to search and edit images according to their requests. To build such a system, we first collect image search and editing conversations between pairs of annotators. The assistant-annotators are equipped with a customized image search and editing tool to address the requests from the user-annotators. The functions that the assistant-annotators conduct with the tool are recorded as executable commands, allowing the trained system to be useful for real-world application execution. We also introduce a generator-extractor baseline model for this task, which can adaptively select the source of the next token (i.e., from the vocabulary or from textual/visual contexts) for the executable command. This serves as a strong starting point while still leaving a large human-machine performance gap for useful future work.conversational image search and editing annotations, where the agent holds a grounded conversation with users and helps them to search and edit images according to their requests. To build such a system, we first collect image search and editing conversations between pairs of annotators. The assistant-annotators are equipped with a customized image search and editing tool to address the requests from the user-annotators. The functions that the assistant-annotators conduct with the tool are recorded as executable commands, allowing the trained system to be useful for real-world application execution. We also introduce a generator-extractor baseline model for this task, which can adaptively select the source of the next token (i.e., from the vocabulary or from textual/visual contexts) for the executable command. This serves as a strong starting point while still leaving a large human-machine performance gap for useful future work. 
    more » « less
  2. It is crucial to automatically construct knowledge graphs (KGs) of diverse new relations to support knowledge discovery and broad applications. Previous KG construction methods, based on either crowdsourcing or text mining, are often limited to a small predefined set of relations due to manual cost or restrictions in text corpus. Recent research proposed to use pretrained language models (LMs) as implicit knowledge bases that accept knowledge queries with prompts. Yet, the implicit knowledge lacks many desirable properties of a full-scale symbolic KG, such as easy access, navigation, editing, and quality assurance. In this paper, we propose a new approach of harvesting massive KGs of arbitrary relations from pretrained LMs. With minimal input of a relation definition (a prompt and a few shot of example entity pairs), the approach efficiently searches in the vast entity pair space to extract diverse accurate knowledge of the desired relation. We develop an effective search-and-rescore mechanism for improved efficiency and accuracy. We deploy the approach to harvest KGs of over 400 new relations, from LMs of varying capacities such as RoBERTaNet. Extensive human and automatic evaluations show our approach manages to extract diverse accurate knowledge, including tuples of complex relations (e.g., “A is capable of but not good at B”). The resulting KGs as a symbolic interpretation of the source LMs also reveal new insights into the LMs’ knowledge capacities. 
    more » « less
  3. We present a new search method for mathematical formulas based on Operator Trees (OPTs) representing the application of operators to operands. Our method provides (1) a simple indexing scheme using OPT leaf-root paths, (2) practical matching of the K largest common subexpressions, and (3) scoring matched OPT subtrees by counting nodes corresponding to visible symbols, weighting operators lower than operands. Using the largest common subexpression (K=1), we outperform existing formula search engines for non-wildcard queries on the NTCIR-12 Wikipedia Formula Browsing Task. Stronger results are obtained when using additional subexpressions for scoring. Without parallelization or pruning, our system has practical execution times with low variance when compared to other state-of-the-art formula search engines. 
    more » « less
  4. The ARQMath Lab at CLEF 2020 considers the problem of finding answers to new mathematical questions among posted answers on a community question answering site (Math Stack Exchange). Queries are question postings held out from the test collection, each containing both text and at least one formula. We expect this to be a challenging task, as both math and text may be needed to find relevant answer posts. While several models have been proposed for text question answering, math question answering is in an earlier stage of development. To advance math-aware search and mathematical question answering systems, we will create a standard test collection for researchers to use for benchmarking. ARQMath will also include a formula retrieval sub-task: individual formulas from question posts are used to locate formulas in earlier answer posts, with relevance determined by narrative fields created based on the original question. We will use these narrative fields to explore diverse information needs for formula search (e.g., alternative notation, applications in specific fields or definition). 
    more » « less
  5. Table search aims to answer a query with a ranked list of tables. Unfortunately, current test corpora have focused mostly on needle- in-the-haystack tasks, where only a few tables are expected to exactly match the query intent. Instead, table search tasks often arise in response to the need for retrieving new datasets or augment- ing existing ones, e.g., for data augmentation within data science or machine learning pipelines. Existing table repositories and bench- marks are limited in their ability to test retrieval methods for table search tasks. Thus, to close this gap, we introduce a novel dataset for query-by-example Semantic Table Search. This novel dataset con- sists of two snapshots of the large-scale Wikipedia tables collection from 2013 and 2019 with two important additions: (1) a page and topic aware ground truth relevance judgment and (2) a large-scale DBpedia entity linking annotation. Moreover, we generate a novel set of entity-centric queries that allows testing existing methods under a novel search scenario: semantic exploratory search. The resulting resource consists of 9,296 novel queries, 610,553 query- table relevance annotations, and 238,038 entity-linked tables from the 2013 snapshot. Similarly, on the 2019 snapshot, the resource consists of 2,560 queries, 958,214 relevance annotations, and 457,714 total tables. This makes our resource the largest annotated table- search corpus to date (97 times more queries and 956 times more annotated tables than any existing benchmark). We perform a user study among domain experts and prove that these annotators agree with the automatically generated relevance annotations. As a re- sult, we can re-evaluate some basic assumptions behind existing table search approaches identifying their shortcomings along with promising novel research directions. 
    more » « less