skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward Magneto-Electroactive Endoluminal Soft (MEESo) Robots
Abstract This paper introduces a magneto-electroactive endoluminal soft (MEESo) robot concept, which could enable new classes of catheters, tethered capsule endoscopes, and other mesoscale soft robots designed to navigate the natural lumens of the human body for a variety of medical applications. The MEESo locomotion mechanism combines magnetic propulsion with body deformation created by an ionic polymer-metal composite (IPMC) electroactive polymer. A detailed explanation of the MEESo concept is provided, including experimentally validated models and simulated magneto-electroactive actuation results demonstrating the locomotive benefits of incorporating an IPMC compared to magnetic actuation alone.  more » « less
Award ID(s):
1830958
PAR ID:
10198769
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Toward Magneto-Electroactive Endoluminal Soft (MEESo) Robots
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Endoluminal devices are indispensable in medical procedures in the natural lumina of the body, such as the circulatory system and gastrointestinal tract. In current clinical practice, there is a need for increased control and capabilities of endoluminal devices with less discomfort and risk to the patient. This paper describes the detailed modeling and experimental validation of a magneto-electroactive endoluminal soft (MEESo) robot concept that combines magnetic and electroactive polymer (EAP) actuation to improve the utility of the device. The proposed capsule-like device comprises two permanent magnets with alternating polarity connected by a soft, low-power ionic polymer-metal composite (IPMC) EAP body. A detailed model of the MEESo robot is developed to explore quantitatively the effects of dual magneto-electroactive actuation on the robot’s performance. It is shown that the robot’s gait is enhanced, during the magnetically-driven gait cycle, with IPMC body deformation. The concept is further validated by creating a physical prototype MEESo robot. Experimental results show that the robot’s performance increases up to 68% compared to no IPMC body actuation. These results strongly suggest that integrating EAP into the magnetically-driven system extends the efficacy for traversing tract environments. 
    more » « less
  2. Ionic polymer metal composites (IPMCs) are soft electroactive materials that are finding increasing use as actuators in several engineering domains, where there is a need of large compliance and low activation voltage. Similar to traditional sandwich structures, an IPMC comprises a hydrated ionomer core that is sandwiched by two stiffer electrodes. The application of a voltage across the electrodes drives charge migration within the ionomer, which, in turn, contributes to the development of an eigenstress, associated with osmotic pressure and Maxwell stress. Critical to IPMC actuation is the variation of the eigenstress through the thickness of the ionomer, which is responsible for strain localization at the ionomer-electrode interfaces. Despite considerable progress in the development of reliable continuum theories and finite element tools, accurate structural theories that could beget physical insight into the inner workings of IPMC actuation are lacking. Here, we seek to bridge this gap by contributing a principled methodology to structural modeling of IPMC actuation. Our approach begins with the study of the IPMC electrochemistry through the method of matched asymptotic expansions, which yields a semi-analytical expression for the eigenstress as a function of the applied voltage. Hence, we establish a total potential energy that accounts for the strain energy of the ionomer, the strain energy of the electrodes, and the work performed by the eigenstress. By projecting the IPMC kinematics on select beam-like representations and imposing the stationarity of the total potential energy, we formulate rigorous structural theories for IPMC actuation. Not only do we examine classical low-order and higher-order beam theories, but we also propose enriched theories that account for strain localization near the electrodes. The accuracy of these theories is assessed through comparison with finite element simulations on a plane-strain problem of non-uniform bending. Our results indicate that an enriched Euler-Bernoulli beam theory, with three independent field variables, is successful in capturing the main features of IPMC actuation at a limited computational cost. 
    more » « less
  3. Soft robots, constructed from deformable materials, offer significant advantages over rigid robots by mimicking biological tissues and providing enhanced adaptability, safety, and functionality across various applications. Central to these robots are electroactive polymer (EAP) actuators, which allow large deformations in response to external stimuli. This review examines various EAP actuators, including dielectric elastomers, liquid crystal elastomers (LCEs), and ionic polymers, focusing on their potential as artificial muscles. EAPs, particularly ionic and electronic varieties, are noted for their high actuation strain, flexibility, lightweight nature, and energy efficiency, making them ideal for applications in mechatronics, robotics, and biomedical engineering. This review also highlights piezoelectric polymers like polyvinylidene fluoride (PVDF), known for their flexibility, biocompatibility, and ease of fabrication, contributing to tactile and pressure sensing in robotic systems. Additionally, conducting polymers, with their fast actuation speeds and high strain capabilities, are explored, alongside magnetic polymer composites (MPCs) with applications in biomedicine and electronics. The integration of machine learning (ML) and the Internet of Things (IoT) is transforming soft robotics, enhancing actuation, control, and design. Finally, the paper discusses future directions in soft robotics, focusing on self-healing composites, bio-inspired designs, sustainability, and the continued integration of IoT and ML for intelligent, adaptive, and responsive robotic systems. 
    more » « less
  4. Abstract Mechanical metamaterials are architected manmade materials that allow for unique behaviors not observed in nature, making them promising candidates for a wide range of applications. Existing metamaterials lack tunability as their properties can only be changed to a limited extent after the fabrication. Herein, a new magneto‐mechanical metamaterial is presented that allows great tunability through a novel concept of deformation mode branching. The architecture of this new metamaterial employs an asymmetric joint design using hard‐magnetic soft active materials that permits two distinct actuation modes (bending and folding) under opposite‐direction magnetic fields. The subsequent application of mechanical compression leads to the deformation mode branching where the metamaterial architecture transforms into two distinctly different shapes, which exhibit very different deformations and enable great tunability in properties such as mechanical stiffness and acoustic bandgaps. Furthermore, this metamaterial design can be incorporated with magnetic shape memory polymers with global stiffness tunability, which also allows for the global shift of the acoustic behaviors. The combination of magnetic and mechanical actuations, as well as shape memory effects, impart wide tunable properties to a new paradigm of metamaterials. 
    more » « less
  5. Abstract Mechanotherapy has emerged as a promising treatment for tissue injury. However, existing robots for mechanotherapy are often designed on intuition, lack remote and wireless control, and have limited motion modes. Herein, through topology optimization and hybrid fabrication, wireless magneto‐active soft robots are created that can achieve various modes of programmatic deformations under remote magnetic actuation and apply mechanical forces to tissues in a precise and predictable manner. These soft robots can quickly and wirelessly deform under magnetic actuation and are able to deliver compressing, stretching, shearing, and multimodal forces to the surrounding tissues. The design framework considers the hierarchical tissue‐robot interaction and, therefore, can design customized soft robots for different types of tissues with varied mechanical properties. It is shown that these customized robots with different programmable motions can induce precise deformations of porcine muscle, liver, and heart tissues with excellent durability. The soft robots, the underlying design principles, and the fabrication approach provide a new avenue for developing next‐generation mechanotherapy. 
    more » « less