skip to main content

Title: Graph Structure of Neural Networks
Neural networks are often represented as graphs of connections between neurons. However, despite their wide use, there is currently little understanding of the relationship between the graph structure of the neural network and its predictive performance. Here we systematically investigate how does the graph structure of neural networks affect their predictive performance. To this end, we develop a novel graph-based representation of neural networks called relational graph, where layers of neural network computation correspond to rounds of message exchange along the graph structure. Using this representation we show that: (1) a “sweet spot” of relational graphs leads to neural networks with significantly improved predictive performance; (2) neural network’s performance is approximately a smooth function of the clustering coefficient and average path length of its relational graph; (3) our findings are consistent across many different tasks and datasets; (4) the sweet spot can be identified efficiently; (5) topperforming neural networks have graph structure surprisingly similar to those of real biological neural networks. Our work opens new directions for the design of neural architectures and the understanding on neural networks in general.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
International Conference on Machine Learning (ICML)
Sponsoring Org:
National Science Foundation
More Like this
  1. Focusing on graph-structured prediction tasks, we demon- strate the ability of neural networks to provide both strong predictive performance and easy interpretability, two proper- ties often at odds in modern deep architectures. We formulate the latter by the ability to extract the relevant substructures for a given task, inspired by biology and chemistry appli- cations. To do so, we utilize the Local Relational Pooling (LRP) model, which is recently introduced with motivations from substructure counting. In this work, we demonstrate that LRP models can be used on challenging graph classification tasks to provide both state-of-the-art performance and inter- pretability, throughmore »the detection of the relevant substructures used by the network to make its decisions. Besides their broad applications (biology, chemistry, fraud detection, etc.), these models also raise new theoretical questions related to com- pressed sensing and to computational thresholds on random graphs.« less
  2. Abstract

    Statistical relational learning (SRL) and graph neural networks (GNNs) are two powerful approaches for learning and inference over graphs. Typically, they are evaluated in terms of simple metrics such as accuracy over individual node labels. Complexaggregate graph queries(AGQ) involving multiple nodes, edges, and labels are common in the graph mining community and are used to estimate important network properties such as social cohesion and influence. While graph mining algorithms support AGQs, they typically do not take into account uncertainty, or when they do, make simplifying assumptions and do not build full probabilistic models. In this paper, we examine themore »performance of SRL and GNNs on AGQs over graphs with partially observed node labels. We show that, not surprisingly, inferring the unobserved node labels as a first step and then evaluating the queries on the fully observed graph can lead to sub-optimal estimates, and that a better approach is to compute these queries as an expectation under the joint distribution. We propose a sampling framework to tractably compute the expected values of AGQs. Motivated by the analysis of subgroup cohesion in social networks, we propose a suite of AGQs that estimate the community structure in graphs. In our empirical evaluation, we show that by estimating these queries as an expectation, SRL-based approaches yield up to a 50-fold reduction in average error when compared to existing GNN-based approaches.

    « less
  3. Demeniconi, C. ; Davidson, I (Ed.)
    Many irregular domains such as social networks, financial transactions, neuron connections, and natural language constructs are represented using graph structures. In recent years, a variety of graph neural networks (GNNs) have been successfully applied for representation learning and prediction on such graphs. In many of the real-world applications, the underlying graph changes over time, however, most of the existing GNNs are inadequate for handling such dynamic graphs. In this paper we propose a novel technique for learning embeddings of dynamic graphs using a tensor algebra framework. Our method extends the popular graph convolutional network (GCN) for learning representations of dynamicmore »graphs using the recently proposed tensor M-product technique. Theoretical results presented establish a connection between the proposed tensor approach and spectral convolution of tensors. The proposed method TM-GCN is consistent with the Message Passing Neural Network (MPNN) framework, accounting for both spatial and temporal message passing. Numerical experiments on real-world datasets demonstrate the performance of the proposed method for edge classification and link prediction tasks on dynamic graphs. We also consider an application related to the COVID-19 pandemic, and show how our method can be used for early detection of infected individuals from contact tracing data.« less
  4. The ability to detect and count certain substructures in graphs is important for solving many tasks on graph-structured data, especially in the contexts of computa- tional chemistry and biology as well as social network analysis. Inspired by this, we propose to study the expressive power of graph neural networks (GNNs) via their ability to count attributed graph substructures, extending recent works that examine their power in graph isomorphism testing and function approximation. We distinguish between two types of substructure counting: induced-subgraph-count and subgraph-count, and establish both positive and negative answers for popular GNN architectures. Specifically, we prove that Message Passingmore »Neural Networks (MPNNs), 2-Weisfeiler-Lehman (2-WL) and 2-Invariant Graph Networks (2-IGNs) cannot perform induced-subgraph-count of any connected substructure consisting of 3 or more nodes, while they can perform subgraph-count of star-shaped sub- structures. As an intermediary step, we prove that 2-WL and 2-IGNs are equivalent in distinguishing non-isomorphic graphs, partly answering an open problem raised in [38]. We also prove positive results for k-WL and k-IGNs as well as negative results for k-WL with a finite number of iterations. We then conduct experiments that support the theoretical results for MPNNs and 2-IGNs. Moreover, motivated by substructure counting and inspired by [45], we propose the Local Relational Pooling model and demonstrate that it is not only effective for substructure counting but also able to achieve competitive performance on molecular prediction tasks.« less
  5. Message passing Graph Neural Networks (GNNs) provide a powerful modeling framework for relational data. However, the expressive power of existing GNNs is upper-bounded by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test, which means GNNs that are not able to predict node clustering coefficients and shortest path distances, and cannot differentiate between different d regular graphs. Here we develop a class of message passing GNNs, named Identity-aware Graph Neural Networks (ID-GNNs), with greater expressive power than the 1-WL test. ID-GNN offers a minimal but powerful solution to limitations of existing GNNs. ID-GNN extends existing GNN architectures by inductively considering nodes’ identities duringmore »message passing. To embed a given node, IDGNN first extracts the ego network centered at the node, then conducts rounds of heterogeneous message passing, where different sets of parameters are applied to the center node than to other surrounding nodes in the ego network. We further propose a simplified but faster version of ID-GNN that injects node identity information as augmented node features. Altogether, both versions of ID GNN represent general extensions of message passing GNNs, where experiments show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks; 3% accuracy improvement on node and graph classification benchmarks; and 15% ROC AUC improvement on real-world link prediction tasks. Additionally, ID-GNNs demonstrate improved or comparable performance over other task-specific graph networks.« less