skip to main content


Title: Control of hot-carrier relaxation time in Au-Ag thin films through alloying

The plasmon resonance of a structure is primarily dictated by its optical properties and geometry, which can be modified to enable hot-carrier photodetectors with superior performance. Recently, metal alloys have played a prominent role in tuning the resonance of plasmonic structures through chemical composition engineering. However, it has been unclear how alloying modifies the time dynamics of the generated hot-carriers. In this work, we elucidate the role of chemical composition on the relaxation time of hot-carriers for the archetypal AuxAg1−xthin film system. Through time-resolved optical spectroscopy measurements in the visible wavelength range, we measure composition-dependent relaxation times that vary up to 8× for constant pump fluency. Surprisingly, we find that the addition of 2% of Ag into Au films can increase the hot-carrier lifetime by approximately 35% under fixed fluence, as a result of a decrease in optical loss. Further, the relaxation time is found to be inversely proportional to the imaginary part of the permittivity. Our results indicate that alloying is a promising approach to effectively control hot-carrier relaxation time in metals.

 
more » « less
NSF-PAR ID:
10198898
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
28
Issue:
22
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 33528
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Above‐equilibrium “hot”‐carrier generation in metals is a promising route to convert photons into electrical charge for efficient near‐infrared optoelectronics. However, metals that offer both hot‐carrier generation in the near‐infrared and sufficient carrier lifetimes remain elusive. Alloys can offer emergent properties and new design strategies compared to pure metals. Here, it is shown that a noble‐transition alloy, AuxPd1−x, outperforms its constituent metals concerning generation and lifetime of hot carriers when excited in the near‐infrared. At optical fiber wavelengths (e.g., 1550 nm), Au50Pd50provides a 20‐fold increase in the number of ≈0.8 eV hot holes, compared to Au, and a threefold increase in the carrier lifetime, compared to Pd. The discovery that noble‐transition alloys can excel at hot‐carrier generation reveals a new material platform for near‐infrared optoelectronic devices.

     
    more » « less
  2. Plasmonic nanostructures have been demonstrated as emergent photocatalysts because of their efficient photon absorption and their ability to produce hot carriers. However, the plasmon-generated hot carriers decay through ultrafast relaxation pathways, resulting in a short lifetime that impedes the exploitation of hot carriers for chemical reactions. Charge separation at the heterojunction of the hybrid nanostructures can counteract the ultrafast decay to extend the carrier lifetime. Here, we fabricate hybrid nanostructures composed of gold nanorods and a carbon thin film and demonstrate efficient charge transfer between these two materials. Using single-particle dark-field scattering spectroscopy, we observe a broadening of the longitudinal plasmon for gold nanorods on a carbon film compared to those on a glass substrate. We attribute this plasmon damping to the electron transfer from gold nanorods to the carbon film and exclude the contribution from plasmon-induced resonance energy transfer. The electron transfer efficiencies are calculated as 52.8 ± 4.8 and 57.4 ± 4.0% for carbon films with thicknesses of 10 and 25 nm, respectively. This work demonstrates efficient charge separation at the gold–carbon film interface, which can extend the lifetime of hot carriers to promote plasmonic photocatalysts. 
    more » « less
  3. Surface plasmon mediated hot-carrier generation is utilized widely for the manipulation of electron–photon interactions in many types of optoelectronic devices including solar cells, photodiodes, and optical modulators. A diversity of plasmonic systems such as nanoparticles, resonators, and waveguides has been introduced to enhance hot-carrier generation; however, the impact of propagating surface plasmons on hot-carrier lifetime has not been clearly demonstrated. Here, we systematically study the hot-carrier relaxation in thin film gold (Au) samples under surface plasmon coupling with the Kretschmann configuration. We observe that the locally confined electric field at the surface of the metal significantly affects the hot-carrier distribution and electron temperature, which results in a slowing of the hot electrons’ relaxation time, regardless of the average value of the absorbed power in the Au thin film. This result could be extended to other plasmonic nanostructures, enabling the control of hot-carrier lifetimes throughout the optical frequency range.

     
    more » « less
  4. Abstract Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today’s magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enable quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton–Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light–matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future. 
    more » « less
  5. Abstract

    Ultrafast optical switching in plasmonic platforms relies on the third‐order Kerr nonlinearity, which is tightly linked to the dynamics of hot carriers in nanostructured metals. Although extensively utilized, a fundamental understanding on the dependence of the switching dynamics upon optical resonances has often been overlooked. Here, all‐optical control of resonance bands in a hybrid photonic‐plasmonic crystal is employed as an empowering technique for probing the resonance‐dependent switching dynamics upon hot carrier formation. Differential optical transmission measurements reveal an enhanced switching performance near the anti‐crossing point arising from strong coupling between local and nonlocal resonance modes. Furthermore, entangled with hot‐carrier dynamics, the nonlinear correspondence between optical resonances and refractive index change results in tailorable dispersion of recovery speeds which can notably deviate from the characteristic lifetime of hot carriers. The comprehensive understanding provides new protocols for optically characterizing hot‐carrier dynamics and optimizing resonance‐based all‐optical switches for operations across the visible spectrum.

     
    more » « less