skip to main content


Title: Increased power from conditional bacterial genome-wide association identifies macrolide resistance mutations in Neisseria gonorrhoeae
Abstract

The emergence of resistance to azithromycin complicates treatment ofNeisseria gonorrhoeae, the etiologic agent of gonorrhea. Substantial azithromycin resistance remains unexplained after accounting for known resistance mutations. Bacterial genome-wide association studies (GWAS) can identify novel resistance genes but must control for genetic confounders while maintaining power. Here, we show that compared to single-locus GWAS, conducting GWAS conditioned on known resistance mutations reduces the number of false positives and identifies a G70D mutation in the RplD 50S ribosomal protein L4 as significantly associated with increased azithromycin resistance (p-value = 1.08 × 10−11). We experimentally confirm our GWAS results and demonstrate that RplD G70D and other macrolide binding site mutations are prevalent (present in 5.42% of 4850 isolates) and widespread (identified in 21/65 countries across two decades). Overall, our findings demonstrate the utility of conditional associations for improving the performance of microbial GWAS and advance our understanding of the genetic basis of macrolide resistance.

 
more » « less
Award ID(s):
1659752
NSF-PAR ID:
10198936
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pathogenic Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea. N. gonorrhoeae has evolved high levels of antimicrobial resistance (AR) leading to therapeutic failures even in dual-therapy treatment with azithromycin and ceftriaxone. AR mechanisms can be acquired by genetic transfer from closely related species, such as naturally competent commensal Neisseria species. At present, little is known about the antimicrobial resistance profiles of commensal Neisseria. Here, we characterized the phenotypic resistance profile of four commensal Neisseria species (N. lactamica, N. cinerea, N. mucosa, and N. elongata) against 10 commonly used antibiotics, and compared their profiles to 4 N. gonorrhoeae strains, using disk diffusion and minimal inhibitory concentration assays. Overall, we observed that 3 of the 4 commensals were more resistant to several antibiotics than pathogenic N. gonorrhoeae strains. Next, we compared publicly available protein sequences of known AR genes, including penicillin-binding-protein 2 (PBP2) from commensals and N. gonorrhoeae strains. We found mutations in PBP2 known to confer resistance in N. gonorrhoeae also present in commensal Neisseria sequences. Our results suggest that commensal Neisseria have unexplored antibiotic resistance gene pools that may be exchanged with pathogenic N. gonorrhoeae, possibly impairing drug development and clinical treatment. 
    more » « less
  2. ABSTRACT Genome-wide association studies (GWAS) can identify genetic variants responsible for naturally occurring and quantitative phenotypic variation. Association studies therefore provide a powerful complement to approaches that rely on de novo mutations for characterizing gene function. Although bacteria should be amenable to GWAS, few GWAS have been conducted on bacteria, and the extent to which nonindependence among genomic variants (e.g., linkage disequilibrium [LD]) and the genetic architecture of phenotypic traits will affect GWAS performance is unclear. We apply association analyses to identify candidate genes underlying variation in 20 biochemical, growth, and symbiotic phenotypes among 153 strains of Ensifer meliloti . For 11 traits, we find genotype-phenotype associations that are stronger than expected by chance, with the candidates in relatively small linkage groups, indicating that LD does not preclude resolving association candidates to relatively small genomic regions. The significant candidates show an enrichment for nucleotide polymorphisms (SNPs) over gene presence-absence variation (PAV), and for five traits, candidates are enriched in large linkage groups, a possible signature of epistasis. Many of the variants most strongly associated with symbiosis phenotypes were in genes previously identified as being involved in nitrogen fixation or nodulation. For other traits, apparently strong associations were not stronger than the range of associations detected in permuted data. In sum, our data show that GWAS in bacteria may be a powerful tool for characterizing genetic architecture and identifying genes responsible for phenotypic variation. However, careful evaluation of candidates is necessary to avoid false signals of association. IMPORTANCE Genome-wide association analyses are a powerful approach for identifying gene function. These analyses are becoming commonplace in studies of humans, domesticated animals, and crop plants but have rarely been conducted in bacteria. We applied association analyses to 20 traits measured in Ensifer meliloti , an agriculturally and ecologically important bacterium because it fixes nitrogen when in symbiosis with leguminous plants. We identified candidate alleles and gene presence-absence variants underlying variation in symbiosis traits, antibiotic resistance, and use of various carbon sources; some of these candidates are in genes previously known to affect these traits whereas others were in genes that have not been well characterized. Our results point to the potential power of association analyses in bacteria, but also to the need to carefully evaluate the potential for false associations. 
    more » « less
  3. Abstract

    Since antibiotic development lags, we search for potential drug targets through directed evolution experiments. A challenge is that many resistance genes hide in a noisy mutational background as mutator clones emerge in the adaptive population. Here, to overcome this noise, we quantify the impact of mutations through evolutionary action (EA). After sequencing ciprofloxacin or colistin resistance strains grown under different mutational regimes, we find that an elevated sum of the evolutionary action of mutations in a gene identifies known resistance drivers. This EA integration approach also suggests new antibiotic resistance genes which are then shown to provide a fitness advantage in competition experiments. Moreover, EA integration analysis of clinical and environmental isolates of antibiotic resistant ofE. coliidentifies gene drivers of resistance where a standard approach fails. Together these results inform the genetic basis of de novo colistin resistance and support the robust discovery of phenotype-driving genes via the evolutionary action of genetic perturbations in fitness landscapes.

     
    more » « less
  4. Abstract

    Interactions between mutations (epistasis) can add substantial complexity to genotype-phenotype maps, hampering our ability to predict evolution. Yet, recent studies have shown that the fitness effect of a mutation can often be predicted from the fitness of its genetic background using simple, linear relationships. This phenomenon, termedglobal epistasis, has been leveraged to reconstruct fitness landscapes and infer adaptive trajectories in a wide variety of contexts. However, little attention has been paid to how patterns of global epistasis may be affected by environmental variation, despite this variation frequently being a major driver of evolution. This is particularly relevant for the evolution of drug resistance, where antimicrobial drugs may change the environment faced by pathogens and shape their adaptive trajectories in ways that can be difficult to predict. By analyzing a fitness landscape of four mutations in a gene encoding an essential enzyme ofP. falciparum(a parasite cause of malaria), here we show that patterns of global epistasis can be strongly modulated by the concentration of a drug in the environment. Expanding on previous theoretical results, we demonstrate that this modulation can be quantitatively explained by how specific gene-by-gene interactions are modified by drug dose. Importantly, our results highlight the need to incorporate potential environmental variation into the global epistasis framework in order to predict adaptation in dynamic environments.

     
    more » « less
  5. Abstract

    Reading disability exhibited defects in different cognitive domains, including word reading fluency, word reading accuracy, phonological awareness, rapid automatized naming and morphological awareness. To identify the genetic basis of Chinese reading disability, we conducted a genome‐wide association study (GWAS) of the cognitive traits related to Chinese reading disability in 2284 unrelated Chinese children. Among the traits analyzed in the present GWAS, we detected one genome‐wide significant association (p < 5 × 10−8) on word reading fluency for one SNP on 4p16.2, within EVC genes (rs6446395,p = 7.33 × 10−10). Rs6446395 also showed significant association with Chinese character reading accuracy (p = 2.95 × 10−4), phonological awareness (p = 7.11 × 10−3) and rapid automatized naming (p = 4.71 × 10−3), implying multiple effects of this variant. The eQTL data showed that rs6446395 affected EVC expression in the cerebellum. Gene‐based analyses identified a gene (PRDM10) to be associated with word reading fluency at the genome‐wide level. Our study discovered a new candidate susceptibility variant for reading ability and provided new insights into the genetics of developmental dyslexia in Chinese children.

     
    more » « less