skip to main content


Title: The Impact of a Mobile 3D Printing and Making Platform on Student Awareness and Engagement
3D printing technology has played an integral part in the growth of makerspaces, showing potential in enabling the integration of art (A) with science, technology, engineering, and math (STEM) disciplines, giving new possibilities to STEAM implementation. This paper presents the effectiveness of a deployable mobile making platform and its curriculum, focused on 3D printing education. This setup, which draws inspiration from modern makerspaces, was deployed for 227 undergraduate students in Art and Engineering majors at multiple campuses of a large northeastern university and used in either a pre-arranged hour-long session or voluntary walk-in session. Self-reported surveys were created to measure participants’ pre- and post-exposure awareness of 3D printing, design, and STEAM quantified through their (1) familiarity, (2) attitude, (3) interest, and (4) self-efficacy. Additionally, observations on participant engagement and use of the space were made. Statistically significant increases in awareness of 3D printing technology were observed in the participants from both Art and Engineering majors, as well as at different campus locations, irrespective of their initial differences. Observations also show a difference in engagement between prearranged sessions and walk-in sessions, which indicates that different session formats may promote specific engagement with different participant types. Ultimately, this research demonstrates two key findings: (1) though they may gravitate to different elements of 3D printing and design, a single makerspace can be used to engage both Art and Engineering students and (2) by introducing mobility to the traditional idea of a makerspace, participants with different initial levels of AM awareness can be brought to similar final awareness. This second finding is especially essential given the disparities in modern student access to 3D printing technology.  more » « less
Award ID(s):
1623494
NSF-PAR ID:
10198975
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IJEE International Journal of Engineering Education
Volume:
36
Issue:
4
ISSN:
2540-9808
Page Range / eLocation ID:
1411-1427
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recognizing the value of engagement in learning, recent engineering education initiatives have worked to encourage all types of students to pursue engineering while also facilitating the construction of makerspaces on university campuses. Makerspaces have the potential to engage a broader range of students by providing unique and personalized pathways into engineering. While this aims to improve the quality of an engineer’s education, the reality settles in when we begin to question whether these makerspaces are, in fact, encouraging learning in engineering for all types of students. In this work, we focus on investigating how a university makerspace affords learning for female students. We implemented an in-depth phenomenologically based interviewing approach which involved a series of three 90-minute semi-structured interviews with six highly engaged female undergraduate students involved in different makerspaces at a single university. The purpose of these interviews was to engage the students in their experiences with the makerspaces and the projects that they work on in this space, so as to inform how these spaces afford learning, specifically the impact on female student learning. All interviews were conducted by the same female graduate student. This work focuses on the second interviews of two females who had student worker roles in their respective makerspaces on campus. All of the interviews for these two females were transcribed resulting in 180 pages of single-spaced transcriptions, and the second interviews were analyzed through two phases of qualitative data analysis. Types of learning emerged in multiple forms and are presented via case studies of each female participant. For case one, these types of learning include machines learning, social learning, design learning, and self-learning. In the second case, the types of learning are tool learning, resourceful learning, space learning, and management learning. These types of learning are then further discussed according to engineering education pedagogy and implications. Makerspaces are often labeled as “open, learning environments,” and this work demonstrates how these spaces facilitate unique forms of learning that engage these women in the makerspace. 
    more » « less
  2. This work in progress is motivated by a self-study conducted at Texas State University. The study revealed that the average second year science, technology, engineering and math (STEM) student retention rate is 56% vs. 67% for all majors, and that 16% of STEM majors are female while 57% of all undergraduate students are female. Using these statistics, the authors identified the need to offer motivating experiences to freshman in STEM while creating a sense of community among other STEM students. This paper reports on the impact of two interventions designed by the authors and aligned with this need. The interventions are: (1) a one-day multi- disciplinary summer orientation (summer15) to give participants the opportunity to undertake projects that demonstrate the relevance of spatial and computational thinking skills and (2) a subsequent six-week spatial visualization skills training (fall 2015) for students in need to refine these skills. The interventions have spatial skills as a common topic and introduce participants to career applications through laboratory tours and talks. Swail et al.1 mentions that the three elements to address in order to best support students’ persistence and achievement are cognitive, social, and institutional factors. The interventions address all elements to some extent and are part of an NSF IUSE grant (2015-2018) to improve STEM retention. The summer 2015 orientation was attended by 17 freshmen level students in Physics, Engineering, Engineering Technology, and Computer Science. The orientation was in addition to “Bobcat Preview”, a separate mandatory one-week length freshman orientation that includes academic advising and educational and spirit sessions to acclimate students to the campus. The effectiveness of the orientation was assessed through exit surveys administered to participants. Current results are encouraging; 100% of the participants answered that the orientation created a space to learn about science and engineering, facilitated them to make friends and encouraged peer interaction. Eighty percent indicated that the orientation helped them to build confidence in their majors. Exit survey findings were positively linked to a former exit survey from an orientation given to a group of 18 talented and low-income students in 2013. The training on refining spatial visualization skills connects to the summer orientation by its goals. It offers freshman students in need to refine spatial skills a further way to increase motivation to STEM and create community among other students. It is also an effective approach to support students’ persistence and achievement. Bairaktarova et al.2 mention that spatial skills ability is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. Metz et al.3 report that well-developed spatial skills have been shown to lead to success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. The effectiveness of the fall 2015 training was assessed through comparison between pre and post tests results and exit surveys administered to participants. All participants improved their pre-training scores and average improvement in students’ scores was 18.334%. 
    more » « less
  3. This work in progress is motivated by a self-study conducted at Texas State University. The study revealed that the average second year science, technology, engineering and math (STEM) student retention rate is 56% vs. 67% for all majors, and that 16% of STEM majors are female while 57% of all undergraduate students are female. Using these statistics, the authors identified the need to offer motivating experiences to freshman in STEM while creating a sense of community among other STEM students. This paper reports on the impact of two interventions designed by the authors and aligned with this need. The interventions are: (1) a one-day multi- disciplinary summer orientation (summer15) to give participants the opportunity to undertake projects that demonstrate the relevance of spatial and computational thinking skills and (2) a subsequent six-week spatial visualization skills training (fall 2015) for students in need to refine these skills. The interventions have spatial skills as a common topic and introduce participants to career applications through laboratory tours and talks. Swail et al.[1] mentions that the three elements to address in order to best support students’ persistence and achievement are cognitive, social, and institutional factors. The interventions address all elements to some extent and are part of an NSF IUSE grant (2015-2018) to improve STEM retention. The summer 2015 orientation was attended by 17 freshmen level students in Physics, Engineering, Engineering Technology, and Computer Science. The orientation was in addition to “Bobcat Preview”, a separate mandatory one-week length freshman orientation that includes academic advising and educational and spirit sessions to acclimate students to the campus. The effectiveness of the orientation was assessed through exit surveys administered to participants. Current results are encouraging; 100% of the participants answered that the orientation created a space to learn about science and engineering, facilitated them to make friends and encouraged peer interaction. Eighty percent indicated that the orientation helped them to build confidence in their majors. Exit survey findings were positively linked to a former exit survey from an orientation given to a group of 18 talented and low-income students in 2013. The training on refining spatial visualization skills connects to the summer orientation by its goals. It offers freshman students in need to refine spatial skills a further way to increase motivation to STEM and create community among other students. It is also an effective approach to support students’ persistence and achievement. Bairaktarova et al.[2] mention that spatial skills ability is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. Metz et al.[3] report that well-developed spatial skills have been shown to lead to success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. The effectiveness of the fall 2015 training was assessed through comparison between pre and post tests results and exit surveys administered to participants. All participants improved their pre-training scores and average improvement in students’ scores was 18.334%. 
    more » « less
  4. Miller, Eva (Ed.)
    Nascent Professional Identity Development in Freshman Architecture, Engineering, and Construction (AEC) Women Increasing the persistence of talented women into male-dominated architecture, engineering, and construction (AEC) professions could reduce prevailing workforce shortages and improve gender diversity in AEC industry. Identity theorists advocate that professional identity development (PID) improves students’ persistence to become professionals. However, little empirical research exists to inform and guide AEC educators and professionals on AEC-PID in undergraduate AEC women. As the preliminary part of a larger nationwide and longitudinal research study investigating PID processes in undergraduate AEC women, the objective of this research is to examine the characteristics and nascent AEC-PID in 69 women enrolled in freshman AEC courses in five U.S. institutions. A purposive sampling approach ensures participants have a wide range of demographic characteristics. Data from a recruitment survey is analyzed using the NVivo qualitative data analysis software. Content and relational inductive open coding are conducted vertically for each participant and horizontally across different participants. Results indicate passion/interest, inherent abilities, significant others, benefits from industry, and desire to contribute to industry influence decisions to pursue AEC careers. With 52% of participants having science, technology, engineering, art, and math (STEAM) subject preferences, an in vivo code, Perfect Middle Ground, demonstrated the quest to combine STEM and visual art preferences in AEC career decisions. A participant noted that ‘this major (civil engineering) is the perfect middle ground because I can be creative, but still use my strong gift which happens to be math’. Girls with STEAM strengths and passion, particularly in math and fine art, are most likely to develop nascent AEC-PID. Beyond STEM pre-college programs, AEC educators should consider recruiting from sports, as well as visual and performing arts events for pre-college students. Participants’ positive views focus on the importance and significant societal impact of the AEC industry; while, negative views focus on the lack of gender and racial diversity. A combination of participants’ AEC professional experiences and views reveal four increasing levels of nascent AEC-PID which are categorized as the 4Ps: Plain, Passive, Progressive, and Proactive. As a guide to AEC education and professional communities, recommendations are made to increase the AEC-PID of women in each category. With the highest nascent AEC-PID, women in the Proactive category should serve as leaders in AEC classrooms and student organizations. Considering their AEC professional experience and enthusiasm, they should serve as peer mentors to other students, particularly AEC women. Furthermore, they should be given the opportunity to step into more complex roles during internships and encouraged to pursue co-op opportunities. Insights can guide more targeted recruitment, mentoring, preparation, and retention interventions that strengthen the persistence of the next generation of AEC women professionals. In the long term, this could reduce AEC workforce shortages, improve gender diversity, and foster the innovation and development of more gender friendly AEC products and services. 
    more » « less
  5. A diagnostic of thirty questions administered to incoming STEM students in Fall 2013 and Fall 2015 - Fall 2018 reflects that their spatial visualization skills (SVS) need to be improved. Previous studies in the SVS subject [1], [2], [3] report that well-developed SVS skills lead to students’ success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. Authors [4], [5] mention that aptitude in spatial skills is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. This research reports the qualitative and quantitative results of a project designed to improve SVS’s for STEM students managed under two strategies. The first strategy utilized was a series of face-to-face (FtF), two-hour training sessions taught over six weeks to all majors in STEM. This strategy was offered in Spring 2014 and every semester from Fall 2015 - Spring 2018. The second strategy was an embedded training (ET) implemented by one faculty from Fall 2017- Fall 2018. The faculty embedded the training in the US 1100 freshman seminar and was highly motivated to increase awareness of students on the importance and applicability of SVS in their fields of study. As reported by Swail et al. [6], cognitive, social, and institutional factors are key elements to best support students’ persistence and achievement. Both interventions used in this project encompassed all these factors and were supported by an NSF IUSE grant (2015-2019) to improve STEM retention. The FtF training was taken by 34 students majoring in diverse STEM fields. Its effectiveness was statistically assessed through a t-test to compare the results in the Purdue Spatial Visualization Skills Test - Rotations before and after the training and through analysis of surveys. Results were very positive; 85.29% of the participants improved their scores. The average change in scores was 5.29 (from 16.85 to 22.15; 17.65% improvement) and it was statistically significant (p-value 3.9E-8). On the surveys, 90% of students answered that they were satisfied with the training. Several students reported that they appreciated a connection between SVS, Calculus II and Engineering Graphics classes while others based the satisfaction on perceiving the critical role SVS will play in their careers. Results from the ET strategy were also encouraging. Teaching methods, curriculum and results are discussed in this paper. Adjustments to the teaching methods were done over 3 semesters. In the last semester, the faculty found that covering the modules at a slower pace than in the FtF training, asking the students to complete the pre-and post-diagnostic in class, and introducing the Spatial VisTM app to provide students with additional practice were key elements to assure students success and satisfaction. In conclusion, both strategies were demonstrated to be powerful interventions to increase students’ success because they not only offer students, particularly freshman, a way to refine SVS but also increase motivation in STEM while creating a community among students and faculty. The ET is effective and apt to be institutionalized. Lastly, this experimental research strengthens the literature on SVS. 
    more » « less