skip to main content


Title: Midplane temperature and outer edge of the protoplanetary disk around HD 163296
Knowledge of the midplane temperature of protoplanetary disks is one of the key ingredients in theories of dust growth and planet formation. However, direct measurement of this quantity is complicated, and often depends on the fitting of complex models to data. In this paper we demonstrate a method to directly measure the midplane gas temperature from an optically thick molecular line if the disk is moderately inclined. The only model assumption that enters is that the line is very optically thick, specifically in the midplane region where we wish to measure the temperature. Freeze-out of the molecule onto dust grains could thwart this. However, in regions that are expected to be warm enough to avoid freeze-out, this method should work. We apply the method to the CO 2–1 line channel maps of the disk around HD 163296. We find that the midplane temperature between 100 and 400 au drops only mildly from 25 K down to 18 K. While we see no direct evidence of the midplane being optically thin due to strong CO depletion by freeze-out, we cannot rule it out either. The fact that the inferred temperatures are close to the expected CO freeze-out temperature could be an indication of this. Incidently, for the disk around HD 163296 we also find dynamic evidence for a rather abrupt outer edge of the disk, suggestive of outside-in photoevaporation or truncation by an unseen companion.  more » « less
Award ID(s):
1715719
NSF-PAR ID:
10199065
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
633
ISSN:
0004-6361
Page Range / eLocation ID:
A137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High spatial resolution CO observations of midinclination (≈30°–75°) protoplanetary disks offer an opportunity to study the vertical distribution of CO emission and temperature. The asymmetry of line emission relative to the disk major axis allows for a direct mapping of the emission height above the midplane, and for optically thick, spatially resolved emission in LTE, the intensity is a measure of the local gas temperature. Our analysis of Atacama Large Millimeter/submillimeter Array archival data yields CO emission surfaces, dynamically constrained stellar host masses, and disk atmosphere gas temperatures for the disks around the following: HD 142666, MY Lup, V4046 Sgr, HD 100546, GW Lup, WaOph 6, DoAr 25, Sz 91, CI Tau, and DM Tau. These sources span a wide range in stellar masses (0.50–2.10 M ⊙ ), ages (∼0.3–23 Myr), and CO gas radial emission extents (≈200–1000 au). This sample nearly triples the number of disks with mapped emission surfaces and confirms the wide diversity in line emitting heights ( z / r ≈ 0.1 to ≳0.5) hinted at in previous studies. We compute the radial and vertical CO gas temperature distributions for each disk. A few disks show local temperature dips or enhancements, some of which correspond to dust substructures or the proposed locations of embedded planets. Several emission surfaces also show vertical substructures, which all align with rings and gaps in the millimeter dust. Combining our sample with literature sources, we find that CO line emitting heights weakly decline with stellar mass and gas temperature, which, despite large scatter, is consistent with simple scaling relations. We also observe a correlation between CO emission height and disk size, which is due to the flared structure of disks. Overall, CO emission surfaces trace ≈2–5× gas pressure scale heights (H g ) and could potentially be calibrated as empirical tracers of H g . 
    more » « less
  2. Abstract

    While dust disks around optically visible, Class II protostars are found to be vertically thin, when and how dust settles to the midplane are unclear. As part of the Atacama Large Millimeter/submillimeter Array large program, Early Planet Formation in Embedded Disks, we analyze the edge-on, embedded, Class I protostar IRAS 04302+2247, also nicknamed the “Butterfly Star.” With a resolution of 0.″05 (8 au), the 1.3 mm continuum shows an asymmetry along the minor axis that is evidence of an optically thick and geometrically thick disk viewed nearly edge-on. There is no evidence of rings and gaps, which could be due to the lack of radial substructure or the highly inclined and optically thick view. With 0.″1 (16 au) resolution, we resolve the 2D snow surfaces, i.e., the boundary region between freeze-out and sublimation, for12COJ= 2–1,13COJ= 2–1, C18OJ= 2–1,H2COJ= 30,3–20,2, and SOJ= 65–54, and constrain the CO midplane snow line to ∼130 au. We find Keplerian rotation around a protostar of 1.6 ± 0.4Musing C18O. Through forward ray-tracing using RADMC-3D, we find that the dust scale height is ∼6 au at a radius of 100 au from the central star and is comparable to the gas pressure scale height. The results suggest that the dust of this Class I source has yet to vertically settle significantly.

     
    more » « less
  3. null (Ed.)
    We performed a comprehensive demographic study of the CO extent relative to dust of the disk population in the Lupus clouds in order to find indications of dust evolution and possible correlations with other disk properties. We increased the number of disks of the region with measured R CO and R dust from observations with the Atacama Large Millimeter/submillimeter Array to 42, based on the gas emission in the 12 CO J = 2−1 rotational transition and large dust grains emission at ~0.89 mm. The CO integrated emission map is modeled with an elliptical Gaussian or Nuker function, depending on the quantified residuals; the continuum is fit to a Nuker profile from interferometric modeling. The CO and dust sizes, namely the radii enclosing a certain fraction of the respective total flux (e.g., R 68% ), are inferred from the modeling. The CO emission is more extended than the dust continuum, with a R 68% CO / R 68% dust median value of 2.5, for the entire population and for a subsample with high completeness. Six disks, around 15% of the Lupus disk population, have a size ratio above 4. Based on thermo-chemical modeling, this value can only be explained if the disk has undergone grain growth and radial drift. These disks do not have unusual properties, and their properties spread across the population’s ranges of stellar mass ( M ⋆ ), disk mass ( M disk ), CO and dust sizes ( R CO , R dust ), and mass accretion of the entire population. We searched for correlations between the size ratio and M ⋆ , M disk , R CO , and R dust : only a weak monotonic anticorrelation with the R dust is found, which would imply that dust evolution is more prominent in more compact dusty disks. The lack of strong correlations is remarkable: the sample covers a wide range of stellar and disk properties, and the majority of the disks have very similar size ratios. This result suggests that the bulk of the disk population may behave alike and be in a similar evolutionary stage, independent of the stellar and disk properties. These results should be further investigated, since the optical depth difference between CO and dust continuum might play a major role in the observed size ratios of the population. Lastly, we find a monotonic correlation between the CO flux and the CO size. The results for the majority of the disks are consistent with optically thick emission and an average CO temperature of around 30 K; however, the exact value of the temperature is difficult to constrain. 
    more » « less
  4. Abstract The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a detailed, high-resolution (∼10–20 au) view of molecular line emission in five protoplanetary disks at spatial scales relevant for planet formation. Here we present a systematic analysis of chemical substructures in 18 molecular lines toward the MAPS sources: IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. We identify more than 200 chemical substructures, which are found at nearly all radii where line emission is detected. A wide diversity of radial morphologies—including rings, gaps, and plateaus—is observed both within each disk and across the MAPS sample. This diversity in line emission profiles is also present in the innermost 50 au. Overall, this suggests that planets form in varied chemical environments both across disks and at different radii within the same disk. Interior to 150 au, the majority of chemical substructures across the MAPS disks are spatially coincident with substructures in the millimeter continuum, indicative of physical and chemical links between the disk midplane and warm, elevated molecular emission layers. Some chemical substructures in the inner disk and most chemical substructures exterior to 150 au cannot be directly linked to dust substructure, however, which indicates that there are also other causes of chemical substructures, such as snowlines, gradients in UV photon fluxes, ionization, and radially varying elemental ratios. This implies that chemical substructures could be developed into powerful probes of different disk characteristics, in addition to influencing the environments within which planets assemble. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement. 
    more » « less
  5. Abstract

    High-spatial-resolution observations of CO isotopologue line emission in protoplanetary disks at mid-inclinations (≈30°–75°) allow us to characterize the gas structure in detail, including radial and vertical substructures, emission surface heights and their dependencies on source characteristics, and disk temperature profiles. By combining observations of a suite of CO isotopologues, we can map the two-dimensional (r,z) disk structure from the disk upper atmosphere, as traced by CO, to near the midplane, as probed by less abundant isotopologues. Here, we present high-angular-resolution (≲0.″1 to ≈0.″2; ≈15–30 au) observations of CO,13CO, and C18O in either or bothJ= 2–1 andJ= 3–2 lines in the transition disks around DM Tau, Sz 91, LkCa 15, and HD 34282. We derived line emission surfaces in CO for all disks and in13CO for the DM Tau and LkCa 15 disks. With these observations, we do not resolve the vertical structure of C18O in any disk, which is instead consistent with C18O emission originating from the midplane. Both theJ= 2–1 andJ= 3–2 lines show similar heights. Using the derived emission surfaces, we computed radial and vertical gas temperature distributions for each disk, including empirical temperature models for the DM Tau and LkCa 15 disks. After combining our sample with literature sources, we find that13CO line emitting heights are also tentatively linked with source characteristics, e.g., stellar host mass, gas temperature, disk size, and show steeper trends than seen in CO emission surfaces.

     
    more » « less