skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lithium-Sulfur Batteries: Advances and Trends
A review with 132 references. Societal and regulatory pressures are pushing industry towards more sustainable energy sources, such as solar and wind power, while the growing popularity of portable cordless electronic devices continues. These trends necessitate the ability to store large amounts of power efficiently in rechargeable batteries that should also be affordable and long-lasting. Lithium-sulfur (Li-S) batteries have recently gained renewed interest for their potential low cost and high energy density, potentially over 2600 Wh kg−1. The current review will detail the most recent advances in early 2020. The focus will be on reports published since the last review on Li-S batteries. This review is meant to be helpful for beginners as well as useful for those doing research in the field, and will delineate some of the cutting-edge adaptations of many avenues that are being pursued to improve the performance and safety of Li-S batteries.  more » « less
Award ID(s):
1708844
PAR ID:
10199247
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Electrochem
Volume:
1
Issue:
3
ISSN:
2673-3293
Page Range / eLocation ID:
226 to 259
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sulfur and selenium based rechargeable batteries have attracted great attention due to their high gravimetric/volumetric energy densities owing to multielectron conversion reactions. Over the last few years, rationally designed nanomaterials have played a crucial role in the continuous growth of these battery systems. In this context, electrospun nanostructures are of paramount interest for the development of these rechargeable secondary batteries due to their high surface area to volume ratio and good mechanical stability. Here, a systematic and comprehensive review of the recent advances in the development of electrospun nanostructures as novel materials for next generation sulfur and selenium based lithium and sodium batteries is presented. In this review, we highlight the recent progress made in Li–S, RT Na–S, Li–S x Se y , RT Na–S x Se y , Li–Se and RT Na–Se batteries using electrospun carbon, polymers or heterostructures with tailored textural properties, compositions and surface functionalities (polysulfide trapping capability and catalytic activity) in cathodes, interlayers, separator coatings, and electrolyte membranes. The emphasis is placed on various synthesis strategies to design advanced electrospun nanostructures with tunable structural properties and the impact of these features on capacity, rate capability and long-term cycling. Moreover, we have introduced the ‘fraction of (electrochemically) active cathode (FAC)’ as a parameter to highlight the advantages of free-standing electrospun nanostructures compared to their non-electrospun or slurry-cast electrospun counterparts. Furthermore, current challenges and prospects in the use of electrospun nanostructures in each battery system are also discussed. We believe that this review will provide new opportunities in the field of advanced sulfur and selenium based rechargeable batteries using electrospun nanostructures. 
    more » « less
  2. Abstract Li‐S batteries can potentially deliver high energy density and power, but polysulfide shuttle and lithium dendrite formations on Li metal anode have been the major hurdle. The polysulfide shuttle becomes severe particularly when the areal loading of the active material (sulfur) is increased to deliver the high energy density and the charge/discharge current density is raised to deliver high power. This study reports a novel mechanochemical method to create trenches on the surface of carbon nanotubes (CNTs) in free‐standing 3D porous CNT sponges. Unique spiral trenches are created by pressures during the chemical treatment process, providing polysulfide‐philic surfaces for cathode and lithiophilic surfaces for anode. The Li‐S cells made from manufacturing‐friendly sulfur‐sandwiched cathodes and lithium‐infused anodes using the mechanochemically treated electrodes exhibit a strikingly high areal capacity as high as 13.3 mAh cm−2, which is only marginally reduced even with a tenfold increase in current density (16 mA cm−2), demonstrating both high “cell‐level” energy density and power. The outstanding performance can be attributed to the significantly improved reaction kinetics and lowered overpotentials coming from the reduced interfacial resistance and charge transfer resistance at both cathodes and anodes. The trench–wall CNT sponge simultaneously tackles the most critical problems on both the cathodes and anodes of Li‐S batteries, and this method can be utilized in designing new electrode materials for energy storage and beyond. 
    more » « less
  3. Amorphous Li 3 PS 4 (LPS) solid-state electrolytes are promising for energy-dense lithium metal batteries. LPS glass, synthesized from a 3 : 1 mol ratio of Li 2 S and P 2 S 5 , has high ionic conductivity and can be synthesized by ball milling or solution processing. Ball milling has been attractive because it provides the easiest route to access amorphous LPS with a conductivity of 3.5 × 10 −4 S cm −1 (20 °C). However, achieving the complete reaction of precursors via ball milling can be difficult, and most literature reports use X-ray diffraction (XRD) or Raman spectroscopy to confirm sample purity, both of which have limitations. Furthermore, the effect of residual precursors on ionic conductivity and lithium metal cycling is unknown. In this work, we illustrate the importance of multimodal characterization to determine LPS phase and chemical purity. To determine the residual Li 2 S content in LPS, we show that (1) XRD and 31 P solid state nuclear magnetic resonance (ssNMR) are insufficient and (2) Raman loses sensitivity at concentrations below 12 mol% Li 2 S. Most importantly, we show that 7 Li ssNMR is highly sensitive. Using 7 Li ssNMR, we investigate the effect of ball milling parameters and develop a robust and highly reproducible procedure for pure LPS synthesis. We find that as the residual Li 2 S precursor content increases, LPS conductivity decreases and lithium metal batteries exhibit higher overpotentials and poor cycle life. Our work reveals the importance of multimodal characterization techniques for amorphous solid-state electrolyte characterization and will enable better synthetic strategies for highly conductive electrolytes for efficient energy-dense solid-state lithium metal batteries. 
    more » « less
  4. The battery chemistry must be diversified to achieve a sustainable energy landscape by effectively utilizing renewable energy sources. Alkali metal-ion, all-solid-state, metal-air batteries, and multivalent batteries offer unique cost, safety, raw material abundance, energy, and power density solutions. However, realizing these “Beyond Li-ion batteries” must uncover their working principles and performance & property relationship. In this aspect, mitigating chemo-mechanical instabilities in the structure and surface of the electrodes plays a crucial role in their performance. Unfortunately, the coupling between electrochemical and mechanical interactions is often poorly understood due to a lack of operando characterization. This review article explains the working principles of curvature measurement and digital image correlation for measuring stress and strain generations in battery materials. We provided specific examples of how these operando mechanical measurements shed light on instabilities in alkali-metal ion electrodes, solid electrolytes, Li-O2 batteries, and aqueous Zn-ion batteries. Operando mechanical measurements offer an effective way to map changes in the physical fingerprint of the battery materials, therefore providing crucial information to elucidate instabilities in battery materials. 
    more » « less
  5. Abstract Metal‐sulfur batteries are a promising next‐generation energy storage technology, offering high theoretical energy densities with low cost and good sustainability. An active area of research is the development of electrolytes that address unwanted migration of sulfur and intermediate species known as polysulfides during operation of metal‐sulfur batteries, a phenomenon that leads to low energy efficiency and short life‐spans. A particular class of electrolytes, gel polymer electrolytes, are especially attractive for their ability to repel polysulfides on the basis of structure, electrostatics, and other polymer properties. Herein, within the context of magnesium‐ and lithium‐sulfur batteries, we investigate the impact of gel polymer electrolyte cation solvation capacity, a property related to network dielectric constant and chemistry, on sulfur/polysulfide‐polymer interactions, an understudied property‐performance relationship. Polymers with lower cation solvation capacity are found to permanently absorb less polysulfide active material, which increases sulfur utilization for Li−S batteries and significantly increases charge efficiency and life‐span for Li−S and Mg−S batteries. 
    more » « less