skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles
Abstract

The transition of autonomous vehicles into fleets requires an advanced control system design that relies on continuous feedback from the tires. Smart tires enable continuous monitoring of dynamic parameters by combining strain sensing with traditional tire functions. Here, we provide breakthrough in this direction by demonstrating tire-integrated system that combines direct mask-less 3D printed strain gauges, flexible piezoelectric energy harvester for powering the sensors and secure wireless data transfer electronics, and machine learning for predictive data analysis. Ink of graphene based material was designed to directly print strain sensor for measuring tire-road interactions under varying driving speeds, normal load, and tire pressure. A secure wireless data transfer hardware powered by a piezoelectric patch is implemented to demonstrate self-powered sensing and wireless communication capability. Combined, this study significantly advances the design and fabrication of cost-effective smart tires by demonstrating practical self-powered wireless strain sensing capability.

 
more » « less
NSF-PAR ID:
10199272
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ambient energy harvesting using piezoelectric transducers is becoming popular to provide power for small microelectronics devices. The deflection of tires during rotation is an example of the source of energy for electric power generation. This generated power can be used to feed tire selfpowering sensors for bicycles, cars, trucks, and airplanes. The aim of this study is to optimize the energy efficiency of a rainbow shape piezoelectric transducer mounted on the inner layer of a pneumatic tire for providing enough power for microelectronics devices required to monitor tires. For this aim a rainbow shape piezoelectric transducer is adjusted with the tire dimensions and excited based on the car speed and strain. The geometry and load resistance effects of the piezoelectric transducer is optimized using Multiphysics modeling and finite 
    more » « less
  2. This work presents a prototype of a wireless, flexible, self-powered sensor used to analyze head impact kinematics relevant to concussions, which are frequent in high contact sports. Two untethered, paper-thin, and flexible sensing devices with piezoelectric-like behavior are placed around the neck of a human head substitute and used to monitor stress/strain in this region during an impact. The mechanical energy exerted by an impact force –varied in locations and magnitudes– is converted to pulses of electric energy which are transmitted wirelessly to a smart device for storage and analysis. The wireless prototype system is presented using a microcontroller with an integrated Bluetooth Low Energy module. The static and dynamic characteristics of the transmitted signal are then compared to signals from accelerometers embedded in a head substitute, to map the sensor’s output to the angular velocity and acceleration during impacts. It is demonstrated that using only two sensors is enough to detect impacts coming from any direction; and that placing multiple external sensors around the neck region could provide accurate information on the dynamics of the head, during a collision, which other sensors fail to capture. 
    more » « less
  3. Abstract

    One of the environmental crises facing the world is pollution due to rubber auto tire destruction. The use of tires in vehicles consumes 6% of the world's energy and causes 5% of carbon dioxide emissions; it accounts for up to 10% of the microplastic pollution found in oceans. Here, a new rubber nanocomposite self‐assembled from hard and soft elastomer matrixes is designed: polybutadiene with its two hydroxy chain ends reacts with 4,4'‐diphenylmethane diisocyanate to form segmented polyurethane. This system first undergoes self‐assembly, forming well‐defined nanoscale hard domains distributed in the soft matrix. Then, cross‐linking between the soft segments is accomplished by a controlled radiation method, resulting in the double network elastomer (DN‐E). Remarkably, the DN‐E exhibits the lowest reported loss factor value at 60 °C. The index of energy dissipation in the rolling tire demonstrates a prominent reduction of 72%, accomplished with an 88% decrease in energy loss, and 85% less wear loss, as compared with best earlier reported commercial tires. These new double‐network materials open a new prospective for the design and fabrication of ultralow energy‐consumption and strong abrasion‐resistance elastomers, which establishes a milestone for the development of the next generation of green low‐pollution tires causing much less energy dissipation.

     
    more » « less
  4. Berciano, Virginia (Ed.)
    Abstract

    Bionic multifunctional structural materials that are lightweight, strong, and perceptible have shown great promise in sports, medicine, and aerospace applications. However, smart monitoring devices with integrated mechanical protection and piezoelectric induction are limited. Herein, we report a strategy to grow the recyclable and healable piezoelectric Rochelle salt crystals in 3D-printed cuttlebone-inspired structures to form a new composite for reinforcement smart monitoring devices. In addition to its remarkable mechanical and piezoelectric performance, the growth mechanisms, the recyclability, the sensitivity, and repairability of the 3D-printed Rochelle salt cuttlebone composite were studied. Furthermore, the versatility of composite has been explored and applied as smart sensor armor for football players and fall alarm knee pads, focusing on incorporated mechanical reinforcement and electrical self-sensing capabilities with data collection of the magnitude and distribution of impact forces, which offers new ideas for the design of next-generation smart monitoring electronics in sports, military, aerospace, and biomedical engineering.

     
    more » « less
  5. Tire wear is a leading cause of automobile accidents globally. Beyond safety, tire wear affects performance and is an important metric that decides tire replacement, one of the biggest maintenance expense of the global trucking industry. We believe that it is important to measure and monitor tire wear in all automobiles. The current approach to measure tire wear is manual and extremely tedious. Embedding sensor electronics in tires to measure tire wear is challenging, given the inhospitable temperature, pressure, and dynamics of the tire. Further, off-tire sensors placed in the well such as laser range-finders are vulnerable to road debris that may settle in tire grooves. This paper presents Osprey, the first on-automobile, mmWave sensing system that can measure accurate tire wear continuously and is robust to road debris. Osprey’s key innovation is to leverage existing, high-volume, automobile mmWave radar, place it in the tire well of automobiles, and observe reflections of the radar’s signal from the tire surface and grooves to measure tire wear, even in the presence of debris. We achieve this through a super-resolution Inverse Synthetic Aperture Radar algorithm that exploits the natural rotation of the tire and improves range resolution to sub-mm. We show how our system can eliminate debris by attaching specialized metallic structures in the grooves that behave as spatial codes and offer a unique signature, when coupled with the rotation of the tire. In addition to tire wear sensing, we demonstrate the ability to detect and locate unsafe, metallic foreign objects such as nails lodged in the tire. We evaluate Osprey on commercial tires mounted on a mechanical, tire-rotation rig and a passenger car.We test Osprey at different speeds, in the presence of different types of debris, different levels of debris, on different terrains, and different levels of automobile vibration. We achieve a median absolute tire wear error of 0.68 mm across all our experiments. Osprey also locates foreign objects lodged in the tire with an error of 1.7 cm and detects metallic foreign objects with an accuracy of 92%. 
    more » « less