skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthetic Metallodithiolato Ligands as Pendant Bases in [Fe I Fe I ], [Fe I [Fe(NO)] II ], and [(μ-H)Fe II Fe II ] Complexes
Award ID(s):
1665258
PAR ID:
10199338
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
59
Issue:
6
ISSN:
0020-1669
Page Range / eLocation ID:
3753 to 3763
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A (PNNP)FeIIcomplex is shown to catalyze the dimerization of terminal alkynesviaa metal–ligand cooperative mechanism. 
    more » « less
  2. The synthesis, single-crystal structures and magnetic properties of three new cyano-bridged complexes [FeIII4MII2] (M = Fe II , Co II , Ni II ) are reported. Electronic absorption spectroscopy reveals the occurrence of intervalence charge transfer for [FeIII4FeII2]. Field-induced slow magnetic relaxation behavior is exhibited for [FeIII4CoII2] and [FeIII4NiII2] which originates from the ferromagnetic interactions between Fe III and M II spin centers of the square. 
    more » « less
  3. null (Ed.)
    One-pot reaction of tris(2-aminoethyl)amine (TREN), [Cu I (MeCN) 4 ]PF 6 , and paraformaldehyde affords a mixed-valent [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu 3 (μ 3 -OH)] 3+ core. The fourth TREN caps on top of the tricopper cluster to form a cryptand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 and its solvent-exposed analog [ TREN3 Cu II Cu II Cu II (μ 3 -O)](PF 6 ) 4 suggest that isolation of tricopper core in a cryptand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [ TREN4 Cu I Cu I Cu I (μ 3 -OH)](PF 6 ) 2 can reduce O 2 under acidic conditions. The geometric constraints provided by the cryptand are reminiscent of Nature's multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at Cu I Cu I Cu I ( 4a ), Cu II Cu I Cu I ( 4b ), and Cu II Cu II Cu I ( 4c ) states, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (10 5 to 10 6 M −1 s −1 ) were observed for both Cu I Cu I Cu I /Cu II Cu I Cu I and Cu II Cu I Cu I /Cu II Cu II Cu I redox couples, approaching the rapid electron transfer rates of copper sites in MCO. 
    more » « less