skip to main content


Title: Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures
Abstract

Isolated spins are the focus of intense scientific exploration due to their potential role as qubits for quantum information science. Optical access to single spins, demonstrated in III-V semiconducting quantum dots, has fueled research aimed at realizing quantum networks. More recently, quantum emitters in atomically thin materials such as tungsten diselenide have been demonstrated to host optically addressable single spins by means of electrostatic doping the localized excitons. Electrostatic doping is not the only route to charging localized quantum emitters and another path forward is through band structure engineering using van der Waals heterojunctions. Critical to this second approach is to interface tungsten diselenide with other van der Waals materials with relative band-alignments conducive to the phenomenon of charge transfer. In this work we show that the Type-II band-alignment between tungsten diselenide and chromium triiodide can be exploited to excite localized charged excitons in tungsten diselenide. Leveraging spin-dependent charge transfer in the device, we demonstrate spin selectivity in the preparation of the spin-valley state of localized single holes. Combined with the use of strain-inducing nanopillars to coordinate the spatial location of tungsten diselenide quantum emitters, we uncover the possibility of realizing large-scale deterministic arrays of optically addressable spin-valley holes in a solid state platform.

 
more » « less
NSF-PAR ID:
10199856
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Strain engineering is a natural route to control the electronic and optical properties of two-dimensional (2D) materials. Recently, 2D semiconductors have also been demonstrated as an intriguing host of strain-induced quantum-confined emitters with unique valley properties inherited from the host semiconductor. Here, we study the continuous and reversible tuning of the light emitted by such localized emitters in a monolayer tungsten diselenide embedded in a van der Waals heterostructure. Biaxial strain is applied on the emitters via strain transfer from a lead magnesium niobate–lead titanate (PMN-PT) piezoelectric substrate. Efficient modulation of the emission energy of several localized emitters up to 10 meV has been demonstrated on application of a voltage on the piezoelectric substrate. Further, we also find that the emission axis rotates by∼<#comment/>40∘<#comment/>as the magnitude of the biaxial strain is varied on these emitters. These results elevate the prospect of using all electrically controlled devices where the property of the localized emitters in a 2D host can be engineered with elastic fields for an integrated opto-electronics and nano-photonics platform.

     
    more » « less
  2. Abstract

    As hosts for tightly-bound electron-hole pairs carrying quantized angular momentum, atomically-thin semiconductors of transition metal dichalcogenides (TMDCs) provide an appealing platform for optically addressing the valley degree of freedom. In particular, the valleytronic properties of neutral and charged excitons in these systems have been widely investigated. Meanwhile, correlated quantum states involving more particles are still elusive and controversial despite recent efforts. Here, we present experimental evidence for four-particle biexcitons and five-particle exciton-trions in high-quality monolayer tungsten diselenide. Through charge doping, thermal activation, and magnetic-field tuning measurements, we determine that the biexciton and the exciton-trion are bound with respect to the bright exciton and the trion, respectively. Further, both the biexciton and the exciton-trion are intervalley complexes involving dark excitons, giving rise to emissions with large, negative valley polarization in contrast to that of the two-particle excitons. Our studies provide opportunities for building valleytronic quantum devices harnessing high-order TMDC excitations.

     
    more » « less
  3. Mixed-dimensional van der Waals heterojunctions involve interfacing materials with different dimensionalities, such as a 2D transition metal dichalcogenide and a 0D organic semiconductor. These heterojunctions have shown unique interfacial properties not found in either individual component. Here, we use femtosecond transient absorption to reveal photoinduced charge transfer and interlayer exciton formation in a mixed-dimensional type-II heterojunction between monolayer MoS2 and vanadyl phthalocyanine (VOPc). Selective excitation of the MoS2 exciton leads to hole transfer from the MoS2 valence band to VOPc highest occupied molecular orbit in ∼710 fs. On the contrary, selective photoexcitation of the VOPc layer leads to instantaneous electron transfer from its excited state to the conduction band of MoS2 in less than 100 fs. This light-initiated ultrafast separation of electrons and holes across the heterojunction interface leads to the formation of an interlayer exciton. These interlayer excitons formed across the interface lead to longer-lived charge-separated states of up to 2.5 ns, longer than in each individual layer of this heterojunction. Thus, the longer charge-separated state along with ultrafast charge transfer times provide promising results for photovoltaic and optoelectronic device applications.

     
    more » « less
  4. Abstract

    Interlayer excitons in solid‐state systems have emerged as candidates for realizing novel platforms ranging from excitonic transistors and optical qubits to exciton condensates. Interlayer excitons have been discovered in 2D transition metal dichalcogenides, with large exciton binding energies and the ability to form various van der Waals heterostructures. Here, an oxide system consisting of a single unit cell of Mg2TiO4on MgO (001) is proposed as a platform for hosting interlayer excitons. Using a combination of density functional theory (DFT) calculations, molecular beam epitaxy growth, and in situ crystal truncation rod measurements, it is shown that the Mg2TiO4‐MgO interface can be precisely controlled to yield an internal electric field suitable for hosting interlayer excitons. The atoms in the polar Mg2TiO4layers are observed to be displaced to reduce polarity at the interface with the non‐polar MgO (001) surface. Such polarity‐driven atomic displacements strongly affect electrostatics of the film and the interface, resulting in localization of filled and empty band‐edge states in different layers of the Mg2TiO4film. The DFT calculations suggest that the electronic structure is favorable for localization of photoexcited electrons in the bottom layer and holes in the top layer, which may bind to form interlayer exciton states.

     
    more » « less
  5. Abstract

    The valley Zeeman physics of excitons in monolayer transition metal dichalcogenides provides valuable insight into the spin and orbital degrees of freedom inherent to these materials. Being atomically-thin materials, these degrees of freedom can be influenced by the presence of adjacent layers, due to proximity interactions that arise from wave function overlap across the 2D interface. Here, we report 60 T magnetoreflection spectroscopy of the A- and B- excitons in monolayer WS2, systematically encapsulated in monolayer graphene. While the observed variations of the valley Zeeman effect for the A- exciton are qualitatively in accord with expectations from the bandgap reduction and modification of the exciton binding energy due to the graphene-induced dielectric screening, the valley Zeeman effect for the B- exciton behaves markedly different. We investigate prototypical WS2/graphene stacks employing first-principles calculations and find that the lower conduction band of WS2at theK/Kvalleys (theCBband) is strongly influenced by the graphene layer on the orbital level. Specifically, our detailed microscopic analysis reveals that the conduction band at theQpoint of WS2mediates the coupling betweenCBand graphene due to resonant energy conditions and strong coupling to the Dirac cone. This leads to variations in the valley Zeeman physics of the B- exciton, consistent with the experimental observations. Our results therefore expand the consequences of proximity effects in multilayer semiconductor stacks, showing that wave function hybridization can be a multi-step energetically resonant process, with different bands mediating the interlayer interactions. Such effects can be further exploited to resonantly engineer the spin-valley degrees of freedom in van der Waals and moiré heterostructures.

     
    more » « less