skip to main content


Title: Remarkable anoxia tolerance by stoneflies from a floodplain aquifer
Abstract

Alluvial aquifers are key components of river floodplains and biodiversity worldwide, but they contain extreme environmental conditions and have limited sources of carbon for sustaining food webs. Despite this, they support abundant populations of aquifer stoneflies that have large proportions of their biomass carbon derived from methane. Methane is typically produced in freshwater ecosystems in anoxic conditions, while stoneflies (Order: Plecoptera) are thought to require highly oxygenated water. The potential importance of methane‐derived food resources raises the possibility that stonefly consumers have evolved anoxia‐resistant behaviors and physiologies. Here we tested the anoxic and hypoxic responses of 2,445 stonefly individuals in three aquifer species and nine benthic species. We conducted experimental trials in which we reduced oxygen levels, documented locomotor activity, and measured survival rates. Compared to surface‐dwelling benthic relatives, stoneflies from the alluvial aquifer on the Flathead River (Montana) performed better in hypoxic and anoxic conditions. Aquifer species sustained the ability to walk after 4–76 h of anoxia vs. 1 h for benthic species and survived on average three times longer than their benthic counterparts. Aquifer stoneflies also sustained aerobic respiration down to much lower levels of ambient oxygen. We show that aquifer taxa have gene sequences for hemocyanin, an oxygen transport respiratory protein, representing a possible mechanism for surviving low oxygen. This remarkable ability to perform well in low‐oxygen conditions is unique within the entire order of stoneflies (Plecoptera) and uncommon in other freshwater invertebrates. These results show that aquifer stoneflies can exploit rich carbon resources available in anoxic zones, which may explain their extraordinarily high abundance in gravel‐bed floodplain aquifers. These stoneflies are part of a novel food web contributing biodiversity to river floodplains.

 
more » « less
Award ID(s):
1639014
NSF-PAR ID:
10454279
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
10
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Aquatic insects cope with hypoxia and anoxia using a variety of behavioral and physiological responses. Most stoneflies (Plecoptera) occur in highly oxygenated surface waters, but some species live underground in alluvial aquifers containing heterogeneous oxygen concentrations. Aquifer stoneflies appear to be supported by methane-derived food resources, which they may exploit using anoxia-resistant behaviors. We documented dissolved oxygen dynamics and collected stoneflies over 5 years in floodplain wells of the Flathead River, Montana. Hypoxia regularly occurred in two wells, and nymphs of Paraperla frontalis were collected during hypoxic periods. We measured mass-specific metabolic rates (MSMRs) at different oxygen concentrations (12, 8, 6, 4, 2, 0.5 mg l −1 , and during recovery) for 111 stonefly nymphs to determine whether aquifer and benthic taxa differed in hypoxia tolerance. Metabolic rates of aquifer taxa were similar across oxygen concentrations spanning 2 to 12 mg l −1 ( P >0.437), but the MSMRs of benthic taxa dropped significantly with declining oxygen ( P <0.0001; 2.9-times lower at 2 vs. 12 mg l −1 ). Aquifer taxa tolerated short-term repeated exposure to extreme hypoxia surprisingly well (100% survival), but repeated longer-term (>12 h) exposures resulted in lower survival (38–91%) and lower MSMRs during recovery. Our work suggests that aquifer stoneflies have evolved a remarkable set of behavioral and physiological adaptations that allow them to exploit the unique food resources available in hypoxic zones. These adaptations help to explain how large-bodied consumers might thrive in the underground aquifers of diverse and productive river floodplains. 
    more » « less
  2. null (Ed.)
    Hypoxia and associated acidification are growing concerns for ecosystems and biogeochemical cycles in the coastal zone. The northern Gulf of Mexico (nGoM) has experienced large seasonal hypoxia for decades linked to the eutrophication of the continental shelf fueled by the Mississippi River nutrient discharge. Sediments play a key role in maintaining hypoxic and acidified bottom waters, but this role is still not completely understood. In the summer 2017, when the surface area of the hypoxic zone in the nGoM was the largest ever recorded, we investigated four stations on the continental shelf differentially influenced by river inputs of the Mississippi-Atchafalaya River System and seasonal hypoxia. We investigated diagenetic processes under normoxic, hypoxic, and nearly anoxic bottom waters by coupling amperometric, potentiometric, and voltammetric microprofiling with high-resolution diffusive equilibrium in thin-films (DET) profiles and porewater analyses. In addition, we used a time-series of bottom-water dissolved oxygen from May to November 2017, which indicated intense O 2 consumption in bottom waters related to organic carbon recycling. At the sediment-water interface (SWI), we found that oxygen consumption linked to organic matter recycling was large with diffusive oxygen uptake (DOU) of 8 and 14 mmol m –2 d –1 , except when the oxygen concentration was near anoxia (5 mmol m –2 d –1 ). Except at the station located near the Mississippi river outlet, the downcore pore water sulfate concentration decrease was limited, with little increase in alkalinity, dissolved inorganic carbon (DIC), ammonium, and phosphate suggesting that low oxygen conditions did not promote anoxic diagenesis as anticipated. We attributed the low anoxic diagenesis intensity to a limitation in organic substrate supply, possibly linked to the reduction of bioturbation during the hypoxic spring and summer. 
    more » « less
  3. null (Ed.)
    Abstract. Decreasing concentrations of dissolved oxygen in the ocean are considered one of the main threats to marine ecosystems as they jeopardize the growthof higher organisms. They also alter the marine nitrogen cycle, which isstrongly bound to the carbon cycle and climate. While higher organisms ingeneral start to suffer from oxygen concentrations < ∼ 63 µM (hypoxia), the marine nitrogen cycle responds to oxygenconcentration below a threshold of about 20 µM (microbial hypoxia),whereas anoxic processes dominate the nitrogen cycle at oxygenconcentrations of < ∼ 0.05 µM (functionalanoxia). The Arabian Sea and the Bay of Bengal are home to approximately21 % of the total volume of ocean waters revealing microbial hypoxia.While in the Arabian Sea this oxygen minimum zone (OMZ) is also functionallyanoxic, the Bay of Bengal OMZ seems to be on the verge of becoming so. Eventhough there are a few isolated reports on the occurrence of anoxia prior to1960, anoxic events have so far not been reported from the open northernIndian Ocean (i.e., other than on shelves) during the last 60 years.Maintenance of functional anoxia in the Arabian Sea OMZ with oxygenconcentrations ranging between > 0 and ∼ 0.05 µM is highly extraordinary considering that the monsoon reverses thesurface ocean circulation twice a year and turns vast areas of the ArabianSea from an oligotrophic oceanic desert into one of the most productiveregions of the oceans within a few weeks. Thus, the comparably lowvariability of oxygen concentration in the OMZ implies stable balancesbetween the physical oxygen supply and the biological oxygen consumption,which includes negative feedback mechanisms such as reducing oxygenconsumption at decreasing oxygen concentrations (e.g., reduced respiration).Lower biological oxygen consumption is also assumed to be responsible for aless intense OMZ in the Bay of Bengal. According to numerical model results,a decreasing physical oxygen supply via the inflow of water masses from thesouth intensified the Arabian Sea OMZ during the last 6000 years, whereas areduced oxygen supply via the inflow of Persian Gulf Water from the northintensifies the OMZ today in response to global warming. The first issupported by data derived from the sedimentary records, and the latterconcurs with observations of decreasing oxygen concentrations and aspreading of functional anoxia during the last decades in the Arabian Sea.In the Arabian Sea decreasing oxygen concentrations seem to have initiated aregime shift within the pelagic ecosystem structure, and this trend is alsoseen in benthic ecosystems. Consequences for biogeochemical cycles are asyet unknown, which, in addition to the poor representation of mesoscalefeatures in global Earth system models, reduces the reliability of estimatesof the future OMZ development in the northern Indian Ocean. 
    more » « less
  4. Abstract. Hypolimnetic oxygen depletion during summer stratification in lakes can lead to hypoxic and anoxic conditions. Hypolimnetic anoxia is a water quality issue with many consequences, including reduced habitat for cold-water fish species, reduced quality of drinking water, and increased nutrient and organic carbon (OC) release from sediments. Both allochthonous and autochthonous OC loads contribute to oxygen depletion by providing substrate for microbial respiration; however, their relative contributions to oxygen depletion across diverse lake systems remain uncertain. Lake characteristics, such as trophic state, hydrology, and morphometry, are also influential in carbon-cycling processes and may impact oxygen depletion dynamics. To investigate the effects of carbon cycling on hypolimnetic oxygen depletion, we used a two-layer process-based lake model to simulate daily metabolism dynamics for six Wisconsin lakes over 20 years (1995–2014). Physical processes and internal metabolic processes were included in the model and were used to predict dissolved oxygen (DO), particulate OC (POC), and dissolved OC (DOC). In our study of oligotrophic, mesotrophic, and eutrophic lakes, we found autochthony to be far more important than allochthony to hypolimnetic oxygen depletion. Autochthonous POC respiration in the water column contributed the most towards hypolimnetic oxygen depletion in the eutrophic study lakes. POC water column respiration and sediment respiration had similar contributions in the mesotrophic and oligotrophic study lakes. Differences in terms of source of respiration are discussed with consideration of lake productivity and the processing and fates of organic carbon loads.

     
    more » « less
  5. Abstract

    Lakes and reservoirs globally produce large quantities of methane and carbon dioxide in their sediments, which accumulate in the hypolimnia (bottom waters) during thermally stratified conditions. A key parameter controlling hypolimnetic greenhouse gas concentrations is dissolved oxygen. Land use and climate change have increased hypolimnetic anoxia worldwide in lakes and reservoirs, which is expected to affect their methane and carbon dioxide concentrations. We conducted whole‐ecosystem oxygenation experiments to assess the effects of oxygen concentrations on dissolved hypolimnetic greenhouse gas concentrations in comparison to a reference reservoir and calculated the maximum hypolimnetic global warming potential in both reservoirs over three summers. We observed significantly greater hypolimnetic methane under anoxic conditions but similar carbon dioxide concentrations, leading to greater hypolimnetic global warming potential of anoxic hypolimnia. Our study indicates that the global warming potential of hypolimnetic greenhouse gas concentrations may increase as the prevalence of hypolimnetic anoxia increases due to global change.

     
    more » « less