skip to main content

Title: Genomic data reveal similar genetic differentiation in aquifer species with different dispersal capabilities and life histories
Abstract Little is known about the life histories, genetic structure and population connectivity of shallow groundwater organisms. We used next-generation sequencing (RAD-seq) to analyse population genomic structure in two aquifer species: Paraperla frontalis (Banks, 1902), a stonefly with groundwater larvae and aerial (winged) adults; and Stygobromus sp., a groundwater-obligate amphipod. We found similar genetic differentiation in each species between floodplains separated by ~70 river km in the Flathead River basin of north-west Montana, USA. Given that Stygobromus lacks the above-ground life stage of P. frontalis, our findings suggest that connectivity and the magnitude of genetic structure cannot be definitively assumed from life history differences.
Authors:
; ; ; ; ; ; ;
Award ID(s):
1639014
Publication Date:
NSF-PAR ID:
10199983
Journal Name:
Biological Journal of the Linnean Society
Volume:
129
Issue:
2
Page Range or eLocation-ID:
315 to 322
ISSN:
0024-4066
Sponsoring Org:
National Science Foundation
More Like this
  1. We conducted a population genetic analysis of the stalked kelp, Pterygophora californica, in the Santa Barbara Channel, California, USA. The results were compared with previous work on the genetic differentiation of giant kelp, Macrocystis pyrifera, in the same region. These two sympatric kelps not only share many life history and dispersal characteristics but also differ in that dislodged P. californica does not produce floating rafts with buoyant fertile sporophytes, commonly observed for M. pyrifera. We used a comparative population genetic approach with these two species to test the hypothesis that the ability to produce floating rafts increases the genetic connectivity among kelp patches in the Santa Barbara Channel. We quantified the association of habitat continuity and oceanographic distance with the genetic differentiation observed in stalked kelp, like previously conducted for giant kelp. We compared both overall (across all patches) and pairwise (between patches) genetic differentiation. We found that oceanographic transit time, habitat continuity, and geographic distance were all associated with genetic connectivity in P. californica, supporting similar previous findings for M. pyrifera. Controlling for differences in heterozygosity between kelp species using Jost’s DEST, we showed that global differentiation and pairwise differentiation were similar among patches between the two kelp species,more »indicating that they have similar dispersal capabilities despite their differences in rafting ability. These results suggest that rafting sporophytes do not play a significant role in effective dispersal of M. pyrifera at ecologically relevant spatial and temporal scales.« less
  2. Aim: To review the histories of the Colorado River and North American monsoon system to ascertain their effects on the genetic divergence of desert‐adapted animals. Location: Lower Colorado River region, including Mojave and Sonoran deserts, United States. Methods: We synthesized recent geological literature to summarize initiation phases of lower Colorado River evolution, their discrepancies, and potential for post‐vicariance dispersal of animals across the river. We simulated data under geological models and performed a meta‐analysis of published and unpublished genetic data including population diversity metrics, relatedness and historical migration rates to assess alternative divergence hypotheses. Results: The two models for arrival of the Colorado River into the Gulf of California impose east‐west divergence ages of 5.3 and 4.8 Ma, respectively. We found quantifiable river‐associated differentiation in the lower Colorado River region in reptiles, arachnids and mammals relative to flying insects. However, topological statistics, historical migration rates and cross‐river extralimital populations suggest that the river should be considered a leaky barrier that filters, rather than prevents, gene flow. Most markers violated neutrality tests. Differential adaptation to monsoon‐based precipitation differences may contribute to divergence between Mojave and Sonoran populations and should be tested. Main Conclusions: Rivers are dynamic features that can both limitmore »and facilitate gene flow through time, the impacts of which are mitigated by species‐specific life history and dispersal traits. The Southwest is a geo‐climatically complex region with the potential to produce pseudocongruent patterns of genetic divergence, offering a good setting to evaluate intermediate levels of geological‐biological (geobiological) complexity.« less
  3. Chaetognatha are highly-effective predatory components of the marine planktonic assemblages. Many species exhibit disjunct biogeographical distributions throughout the global ocean, and thus serve as sentinel species for examining climate-driven changes in ocean circulation on zooplankton species, communities, and food webs. Of particular interest are ecological changes in the Arctic, a region being drastically affected by climate change. In this study, a 650 base-pair region of the mitochondrial cytochrome oxidase I (mtCOI) gene was sequenced for 131 individuals for the chaetognath Eukrohnia hamata collected from diverse regions throughout the Arctic. DNA sequence analysis was done to characterize population genetic diversity and structure, phylogeography (i.e., geographic distribution of genetic lineages within species), and connectivity among regional populations. High haplotype diversity (Hd) and significant (p <0.02) negative values for Fu’s and Li’s F statistic imply that E. hamata is undergoing population expansion.. Patterns and pathways of population connectivity examined to test several migration hypotheses revealed that pan-Arctic population connectivity followed the primary ocean currents. The reliance of this ecologically important zooplankton species on Arctic Ocean currents has implications for future warming conditions, which have the potential to modify these currents, resulting in altered biogeographical distributions and population connectivity of Arctic zooplankton.
  4. Chaetognatha are highly-effective predatory components of the marine planktonic assemblages. Many species exhibit disjunct biogeographical distributions throughout the global ocean, and thus serve as sentinel species for examining climate-driven changes in ocean circulation on zooplankton species, communities, and food webs. Of particular interest are ecological changes in the Arctic, a region being drastically affected by climate change. In this study, a 650 base-pair region of the mitochondrial cytochrome oxidase I (mtCOI) gene was sequenced for 131 individuals for the chaetognath Eukrohnia hamata collected from diverse regions throughout the Arctic. DNA sequence analysis was done to characterize population genetic diversity and structure, phylogeography (i.e., geographic distribution of genetic lineages within species), and connectivity among regional populations. High haplotype diversity (Hd) and significant (p <0.02) negative values for Fu’s and Li’s F statistic imply that E. hamata is undergoing population expansion.. Patterns and pathways of population connectivity examined to test several migration hypotheses revealed that pan-Arctic population connectivity followed the primary ocean currents. The reliance of this ecologically important zooplankton species on Arctic Ocean currents has implications for future warming conditions, which have the potential to modify these currents, resulting in altered biogeographical distributions and population connectivity of Arctic zooplankton.
  5. The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from localmore »adaptation to environmental conditions and change.« less