skip to main content

Title: Genomic data reveal similar genetic differentiation in aquifer species with different dispersal capabilities and life histories
Abstract Little is known about the life histories, genetic structure and population connectivity of shallow groundwater organisms. We used next-generation sequencing (RAD-seq) to analyse population genomic structure in two aquifer species: Paraperla frontalis (Banks, 1902), a stonefly with groundwater larvae and aerial (winged) adults; and Stygobromus sp., a groundwater-obligate amphipod. We found similar genetic differentiation in each species between floodplains separated by ~70 river km in the Flathead River basin of north-west Montana, USA. Given that Stygobromus lacks the above-ground life stage of P. frontalis, our findings suggest that connectivity and the magnitude of genetic structure cannot be definitively assumed from life history differences.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Biological Journal of the Linnean Society
Page Range / eLocation ID:
315 to 322
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Humans have exaggerated natural habitat fragmentation, negatively impacting species dispersal and reducing population connectivity. Habitat fragmentation can be especially detrimental in freshwater populations, whose dispersal is already constrained by the river network structure. Aquatic insects, for instance, are generally limited to two primary modes of dispersal: downstream drift in the aquatic juvenile life stages and flight during the terrestrial winged adult stage. Yet the impacts of large hydropower dams can make rivers uninhabitable for incoming (drifting) juvenile insects, with remaining refugia found only in tributaries. The ability of adult aquatic insects to traverse such river stretches in search of suitable tributary habitat likely depends on factors such as species‐specific dispersal ability and distance between tributaries. To explore the intersection of natural and human‐induced habitat fragmentation on aquatic insect dispersal ability, we quantified population genetics of three taxa with varying dispersal abilities, a caddisfly (Hydropsychidae,Hydropsyche oslari), a mayfly (Baetidae:Fallceon quilleri), and a water strider (Veliidae:Rhagovelia distincta), throughout tributaries of the Colorado River in the Grand Canyon, Arizona, USA. Using 2bRAD reduced genome sequencing and landscape genetics analyses, we revealed a strong pattern of isolation by distance among mayfly populations. This contrasts with caddisfly and water strider populations, which were largely panmictic. Analysis of thousands of informative single nucleotide polymorphisms showed that realized dispersal ability may not be accurately predicted by species traits for these widespread species. Principal components analysis revealed a strong division between caddisfly populations upstream and downstream of Havasu Creek (279 km through the 390 km study reach), suggesting that the geography of the Grand Canyon imposes a dispersal barrier for this species. Our use of genetic tools in the Grand Canyon to understand population structure has enabled us to elucidate dispersal barriers for aquatic insects. Ultimately, these data may be useful in informing effective conservation management plans for understudied organisms of conservation interest.

    more » « less
  2. Abstract

    Obovaria olivariais a species of freshwater mussel native to the Mississippi River and Laurentian Great Lakes‐St. Lawrence River drainages of North America. This mussel has experienced population declines across large parts of its distribution and is imperiled in many jurisdictions.Obovaria olivariauses the similarly imperiledAcipenser fulvescens(Lake Sturgeon) as a host for its glochidia. We employed mitochondrial DNA sequencing and restriction site‐associated DNA sequencing (RAD‐seq) to assess patterns of genetic diversity and population structure ofOolivariafrom 19 collection locations including the St. Lawrence River drainage, the Great Lakes drainage, the Upper Mississippi River drainage, the Ohioan River drainage, and the Mississippi Embayment. Heterozygosity was highest in Upper Mississippi and Great Lakes populations, followed by a reduction in diversity and relative effective population size in the St. Lawrence populations. PairwiseFSTranged from 0.00 to 0.20, and analyses of genetic structure revealed two major ancestral populations, one including all St. Lawrence River/Ottawa River sites and the other including remaining sites; however, significant admixture and isolation by river distance across the range were evident. The genetic diversity and structure ofOolivariais consistent with the existing literature onAcipenser fulvescensand suggests that, although northern and southernOolivariapopulations are genetically distinct, genetic structure inOolivariais largely clinal rather than discrete across its range. Conservation and restoration efforts ofOolivariashould prioritize the maintenance and restoration of locations whereOolivariaremain, especially in northern rivers, and to ensure connectivity that will facilitate dispersal ofAcipenser fulvescensand movement of encysted glochidia.

    more » « less
  3. Abstract

    The paleback darter,Etheostoma pallididorsum, is considered imperilled and has recently been petitioned for listing under the Endangered Species Act. Previous allozyme‐based studies found evidence of a small effective population size, warranting conservation concern. The objective of this study was to assess the population dynamics and the phylogeographical history of the paleback darter, using a multilocus microsatellite approach and mitochondrial DNA.

    The predictions of this study were that: paleback darter populations will exhibit low genetic diversity and minimal gene flow; population structure will correspond to the river systems from which the samples are derived; reservoir dams impounding the reaches between the Caddo and Ouachita rivers would serve as effective barriers to gene flow; and the Caddo and Ouachita rivers are reciprocally monophyletic.

    Microsatellite DNA loci revealed significant structure among sampled localities (globalFst= 0.17,P< 0.001), with evidence of two distinct populations representing the Caddo and Ouachita rivers. However, Bayesian phylogeographical analyses resulted in three distinct clades: Caddo River, Ouachita River, and Mazarn Creek. Divergence from the most recent ancestor shared among the river drainages was estimated at 60 Kya. Population genetic diversity was relatively low (He= 0.65; mean alleles per locus,A= 6.26), but was comparable with the population genetic diversity found in the close relatives slackwater darter,Etheostoma boschungi(He= 0.65;A= 6.74), and Tuscumbia darter,Etheostoma tuscumbia(He= 0.57;A= 5.53).

    These results have conservation implications for paleback darter populations and can be informative for other headwater specialist species. Like other headwater species with population structuring and relatively low genetic diversity, the persistence of paleback darter populations is likely to be tied to the persistence and connectivity of local breeding and non‐breeding habitat. These results do not raise conservation concern for a population decline; however, the restricted distribution and endemic status of the species still renders paleback darter populations vulnerable to extirpation or extinction.

    more » « less
  4. Abstract Aim

    Current distributions of widespread North American (NA) species have been shaped by Pleistocene glacial cycles, latitudinal temperature gradients, sharp longitudinal habitat transitions and the vicariant effects of major mountain and river systems that subdivide the continent. Within these transcontinental species, genetic diversity patterns might not conform to established biogeographic breaks compared to more spatially restricted taxa due to intrinsic differences or spatiotemporal differences. In this study, we highlight the effects of these extrinsic variables on genetic structuring by investigating the phylogeographic history of a widespread generalist squamate found throughout NA.


    North America.


    Common gartersnake,Thamnophis sirtalis.


    We evaluate the effects of major river basins and the forest‐grassland transition into the Interior Plains on genetic structure patterns using phylogenetic, spatially informed population structure and demographic analyses of single nucleotide polymorphism data and address range expansion history with ecological niche modelling using locality and historic climate data.


    We identify four phylogeographic lineages with varying degrees of connectivity between them. We find discordant population structure patterns between sex‐linked and autosomal loci with respect to the relationship between the central NA lineage relative to coastal lineages. We find support for southeast Pleistocene refugia where recent secondary contact occurred during the Last Glacial Maximum and evidence for both northern and southern refugia in western NA.

    Main Conclusion

    Our results provide strong evidence for a Pliocene origin forT. sirtalisin central‐southeastern NA preceding its rapid expansion across the continent prior to middle Pleistocene climate‐mediated lineage formation. We implicate major riverine networks within the Mississippi watershed in likely repeated westward expansion events across the Interior Plains. Finally, we corroborate prior conclusions that phenotypic differences between subspecies do not reflect shared evolutionary history and note that the degree of separation between inferred lineages warrants further investigation before any taxonomic revisions are proposed.

    more » « less
  5. Abstract

    Several factors have been proposed as drivers of species diversification in the Neotropics, including environmental heterogeneity, the development of drainage systems and historical changes in forest distribution due to climatic oscillations. Here, we investigate which drivers contributed to the evolutionary history and current patterns of diversity of a polymorphic songbird (Arremon taciturnus) that is widely distributed in Amazonian and Atlantic forests as well as in Cerrado gallery and seasonally‐dry forests. We use genomic, phenotypic and habitat heterogeneity data coupled with climatic niche modelling. Results suggest the evolutionary history of the species is mainly related to paleoclimatic changes, although changes in the strength of the Amazon river as a barrier to dispersal, current habitat heterogeneity and geographic distance were also relevant. We propose an ancestral distribution in the Guyana Shield, and recent colonization of areas south of the Amazon river at ~380 to 166 kya, and expansion of the distribution to southern Amazonia, Cerrado and the Atlantic Forest. Since then, populations south of the Amazon River have been subjected to cycles of isolation and possibly secondary contact due to climatic changes that affected habitat heterogeneity and population connectivity. Most Amazonian rivers are not associated with long lasting isolation of populations, but some might act as secondary barriers, susceptible to crossing under specific climatic conditions. Morphological variation, while stable in some parts of the distribution, is not a reliable indicator of genetic structure or phylogenetic relationships.

    more » « less