skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Traffic Analysis Resistant Network (TARN) Anonymity Analysis
Award ID(s):
1643020
PAR ID:
10200180
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of 2019 IEEE 27th International Conference on Network Protocols (ICNP)
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruis, Andrew R.; Lee, Seung B. (Ed.)
    While there has been much growth in the use of microblogging platforms (e.g., Twitter) to share information on a range of topics, researchers struggle to analyze the large volumes of data produced on such platforms. Established methods such as Sentiment Analysis (SA) have been criticized over their inaccuracy and limited analytical depth. In this exploratory methodological paper, we propose a combination of SA with Epistemic Network Analysis (ENA) as an alternative approach for providing richer qualitative and quantitative insights into Twitter discourse. We illustrate the application and potential use of these approaches by visualizing the differences between tweets directed or discussing Democrats and Republicans after the COVID-19 Stimulus Package announcement in the US. SA was integrated into ENA models in two ways: as a part of the blocking variable and as a set of codes. Our results suggest that incorporating SA into ENA allowed for a better understanding of how groups viewed the components of the stimulus issue by splitting them by sentiment and enabled a meaningful inclusion of data with singular subject focus into the ENA models. 
    more » « less
  2. Internet of Things (IoT) frameworks are designed to facilitate provisioning and secure operation of IoT devices. A typical IoT framework consists of various software layers and components including third-party libraries, communication protocol stacks, the Hardware Abstraction Layer (HAL), the kernel, and the apps. IoT frameworks have implicit data flows in addition to explicit data flows due to their event-driven nature. In this paper, we present a static taint tracking framework, IFLOW, that facilitates the security analysis of system code by enabling specification of data-flow queries that can refer to a variety of software entities. We have formulated various security relevant data-flow queries and solved them using IFLOW to analyze the security of several popular IoT frameworks: Amazon FreeRTOS SDK, SmartThings SDK, and Google IoT SDK. Our results show that IFLOW can both detect real bugs and localize security analysis to the relevant components of IoT frameworks. 
    more » « less